Cooperation and dependencies in multipartite systems

We propose an information-theoretic quantifier for the advantage gained from cooperation that captures the degree of dependency between subsystems of a global system. The quantifier is distinct from measures of multipartite correlations despite sharing many properties with them. It is directly computable for classical as well as quantum systems and reduces to comparing the respective conditional mutual information between any two subsystems. Exemplarily we show the benefits of using the new quantifier for symmetric quantum secret sharing. We also prove an inequality characterizing the lack of monotonicity of conditional mutual information under local operations and provide intuitive understanding for it. This underlines the distinction between the multipartite dependence measure introduced here and multipartite correlations.

[1]  K. Życzkowski,et al.  k -uniform mixed states , 2019, Physical Review A.

[2]  R. Renner,et al.  Quantum Conditional Mutual Information and Approximate Markov Chains , 2014, Communications in Mathematical Physics.

[3]  D. L. Zhou,et al.  Irreducible multiparty correlations in quantum states without maximal rank. , 2008, Physical review letters.

[4]  Dawei Ding,et al.  Conditional mutual information of bipartite unitaries and scrambling , 2016, Journal of High Energy Physics.

[5]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[6]  R. Rosenfeld Synergy , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[7]  Klaus-Robert Müller,et al.  Proceedings of the 12th International Conference on Neural Information Processing Systems , 1999 .

[8]  M Paternostro,et al.  Quantum discord bounds the amount of distributed entanglement. , 2012, Physical review letters.

[9]  C. Adami,et al.  Reduction criterion for separability , 1999 .

[10]  Johan Aberg,et al.  The thermodynamic meaning of negative entropy , 2011, Nature.

[11]  최인후,et al.  13 , 1794, Tao te Ching.

[12]  Omar Fawzi,et al.  Universal recovery map for approximate Markov chains , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Rainer Kaltenbaek,et al.  Experimental bound entanglement , 2010 .

[14]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[15]  D. Markham,et al.  Graph states for quantum secret sharing , 2008, 0808.1532.

[16]  Jonas Maziero,et al.  THEORETICAL AND EXPERIMENTAL ASPECTS OF QUANTUM DISCORD AND RELATED MEASURES , 2011, 1107.3428.

[17]  Mario Berta,et al.  Deconstruction and conditional erasure of quantum correlations , 2016, Physical Review A.

[18]  Jens Eisert,et al.  Towards Holography via Quantum Source-Channel Codes. , 2016, Physical review letters.

[19]  A. Winter,et al.  “Squashed entanglement”: An additive entanglement measure , 2003, quant-ph/0308088.

[20]  I. Devetak,et al.  Exact cost of redistributing multipartite quantum states. , 2006, Physical review letters.

[21]  John Preskill,et al.  Topological entanglement entropy. , 2005, Physical Review Letters.

[22]  Charles H. Bennett,et al.  Postulates for measures of genuine multipartite correlations , 2008, 0805.3060.

[23]  Mark M. Wilde,et al.  Conditional quantum one-time pad , 2017, Physical review letters.

[24]  D. Petz Monotonicity of quantum relative entropy revisited , 2002, quant-ph/0209053.

[25]  Mohamed Bourennane,et al.  Experimental bound entanglement through a Pauli channel , 2013, Scientific Reports.

[26]  Fernando G S L Brandão,et al.  Quantum Conditional Mutual Information, Reconstructed States, and State Redistribution. , 2014, Physical review letters.

[27]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[28]  Barry C. Sanders,et al.  Erratum: Graph states for quantum secret sharing [Phys. Rev. A 78, 042309 (2008)] , 2011 .

[29]  David M. Miller,et al.  Computational inference of the molecular logic for synaptic connectivity in C. elegans , 2006, ISMB.

[30]  Springer Medizin,et al.  INFO , 2018, Heilberufe.

[31]  P. Horodecki,et al.  Generalized Smolin states and their properties , 2006 .

[32]  Davide Girolami,et al.  Quantifying genuine multipartite correlations and their pattern complexity , 2017, Physical review letters.

[33]  T. Paterek,et al.  Incompatible local hidden-variable models of quantum correlations , 2012, 1206.2649.

[34]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[35]  金鏞日,et al.  23 , 1973, You Can Cross the Massacre on Foot.

[36]  Naftali Tishby,et al.  Synergy and Redundancy among Brain Cells of Behaving Monkeys , 1998, NIPS.

[37]  Daniel Polani,et al.  Model of Coordination Flow in Remote Collaborative Interaction , 2015, 2015 17th UKSim-AMSS International Conference on Modelling and Simulation (UKSim).

[38]  Johan Aberg,et al.  The thermodynamic meaning of negative entropy , 2010, Nature.

[39]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[40]  M. Nielsen,et al.  Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.

[41]  Marco Piani,et al.  Problem with geometric discord , 2012, 1206.0231.

[42]  TJ Gawne,et al.  How independent are the messages carried by adjacent inferior temporal cortical neurons? , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  G. Tóth,et al.  Experimental observation of four-photon entangled Dicke state with high fidelity. , 2006, Physical review letters.

[44]  M. Horodecki,et al.  Quantum information can be negative , 2005, quant-ph/0505062.

[45]  H. Weinfurter,et al.  Four-photon entanglement from down-conversion , 2001, quant-ph/0103049.

[46]  Complexity measures, emergence, and multiparticle correlations. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Genuinely entangled symmetric states with no N-partite correlations , 2017, 1707.04103.

[48]  M. Ruskai Inequalities for quantum entropy: A review with conditions for equality , 2002, quant-ph/0205064.

[49]  A. Winter,et al.  Quantum correlation without classical correlations. , 2007, Physical review letters.

[50]  H. J. Mclaughlin,et al.  Learn , 2002 .

[51]  D. Anastassiou Computational analysis of the synergy among multiple interacting genes , 2007, Molecular systems biology.

[52]  Thomas Udem,et al.  Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments , 2010 .

[53]  Mark M. Wilde,et al.  Optimized quantum f-divergences and data processing , 2017, Journal of Physics A: Mathematical and Theoretical.

[54]  Michael J. Berry,et al.  Network information and connected correlations. , 2003, Physical review letters.

[55]  N. Ay,et al.  Complexity measures from interaction structures. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Rainer Kaltenbaek,et al.  Experimental bound entanglement in a four-photon state. , 2010, Physical review letters.

[57]  D. Markham,et al.  Quantum secret sharing with qudit graph states , 2010, 1004.4619.

[58]  Mario Berta,et al.  Conditional Decoupling of Quantum Information , 2018, Physical review letters.

[59]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[60]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[61]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[62]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[63]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[64]  Harald Weinfurter,et al.  Multipartite Entanglement Detection with Minimal Effort. , 2014, Physical review letters.

[65]  L. You,et al.  Multiparty correlation measure based on the cumulant , 2006 .

[66]  Mohamed Bourennane,et al.  Experimental four-qubit bound entanglement , 2009 .

[67]  R. Zambrini,et al.  Genuine quantum and classical correlations in multipartite systems. , 2011, Physical review letters.

[68]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[69]  D. Petz Sufficient subalgebras and the relative entropy of states of a von Neumann algebra , 1986 .

[70]  J. Smolin Four-party unlockable bound entangled state , 2000, quant-ph/0001001.

[71]  O. Gühne,et al.  Experimental multiparticle entanglement dynamics induced by decoherence , 2010, 1005.1965.

[72]  Howard Barnum,et al.  On quantum fidelities and channel capacities , 2000, IEEE Trans. Inf. Theory.

[73]  Augusto Smerzi,et al.  Not all pure entangled states are useful for sub-shot-noise interferometry , 2009, 0912.4349.

[74]  A. Winter,et al.  Robustness of Quantum Markov Chains , 2006, quant-ph/0611057.

[75]  W. Zurek,et al.  Introducing Quantum Discord , 2001, quant-ph/0105072.

[76]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[77]  Michael J. Berry,et al.  Synergy, Redundancy, and Independence in Population Codes , 2003, The Journal of Neuroscience.

[78]  Minh C. Tran,et al.  Genuine N-partite entanglement without N-partite correlation functions , 2017, 1704.03385.

[79]  James Sully,et al.  Integral geometry and holography , 2015, 1505.05515.

[80]  J. Latorre,et al.  Absolute maximal entanglement and quantum secret sharing , 2012, 1204.2289.

[81]  Igor Devetak,et al.  Optimal Quantum Source Coding With Quantum Side Information at the Encoder and Decoder , 2007, IEEE Transactions on Information Theory.

[82]  Xiaoting Wang,et al.  Conditional mutual information and quantum steering , 2016, 1612.03875.

[83]  H. Weinfurter,et al.  Higher dimensional entanglement without correlations , 2018, The European Physical Journal D.

[84]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[85]  Harald Weinfurter,et al.  How long does it take to obtain a physical density matrix , 2015, 1512.06866.

[86]  Andreas Winter,et al.  Partial quantum information , 2005, Nature.

[87]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[88]  M. Laurière,et al.  Multipartite Generalization of Quantum Discord. , 2019, Physical review letters.