Overview of Cellulose Nanomaterials, Their Capabilities and Applications

Cellulose nanomaterials (CNs) are a new class of cellulose particles with properties and functionalities distinct from molecular cellulose and wood pulp, and as a result, they are being developed for applications that were once thought impossible for cellulosic materials. Momentum is growing in CN research and development, and commercialization in this field is happening because of the unique combination of characteristics (e.g., high mechanical properties, sustainability, and large-scale production potential) and utility across a broad spectrum of material applications (e.g. as an additive, self-sustaining structures, and template structures) that CNs offer. Despite the challenges typical for materials development, CN and near-CN production is ramping up with pilot scale to industry demonstration trials, and the first commercial products are starting to hit the marketplace. This review provides a broad overview of CNs and their capabilities that are enabling new application areas for cellulose-based materials.

[1]  S. Evangelisti,et al.  Life cycle assessment of nanocellulose-reinforced advanced fibre composites , 2015 .

[2]  Redouane Borsali,et al.  Rodlike Cellulose Microcrystals: Structure, Properties, and Applications , 2004 .

[3]  Stephanie Beck,et al.  Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. , 2011, Biomacromolecules.

[4]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[5]  L. Abdullah,et al.  Rheological properties of cellulose nanocrystal-embedded polymer composites: a review , 2016, Cellulose.

[6]  Rui L Reis,et al.  The potential of cellulose nanocrystals in tissue engineering strategies. , 2014, Biomacromolecules.

[7]  J. Bras,et al.  Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. , 2015, ACS applied materials & interfaces.

[8]  H. Khalil,et al.  Green composites from sustainable cellulose nanofibrils: A review , 2012 .

[9]  Alain Dufresne,et al.  Nanocellulose in biomedicine: Current status and future prospect , 2014 .

[10]  J. Laine,et al.  Handbook of Green Materials , 2014 .

[11]  A. Karim,et al.  What do we still need to understand to commercialize cellulose nanomaterials , 2015 .

[12]  Emily Keller,et al.  Cellulose Nanomaterials — A Path Towards Commercialization Workshop Report , 2014 .

[13]  P. Zavattieri,et al.  Evaluation of reactive force fields for prediction of the thermo-mechanical properties of cellulose Iâ , 2015 .

[14]  Youssef Habibi,et al.  Key advances in the chemical modification of nanocelluloses. , 2014, Chemical Society reviews.

[15]  Robert J. Moon,et al.  The influence of cellulose nanocrystal additions on the performance of cement paste , 2015 .

[16]  Yanyun Zhao,et al.  Development and preliminary field validation of water-resistant cellulose nanofiber based coatings with high surface adhesion and elasticity for reducing cherry rain-cracking , 2016 .

[17]  H. Sehaqui,et al.  Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions , 2010 .

[18]  Jian Li,et al.  Ultralight and highly flexible aerogels with long cellulose I nanofibers , 2011 .

[19]  Qianqian Wang,et al.  Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis , 2015, Cellulose.

[20]  K. Suganuma,et al.  Electrical functionality of inkjet-printed silver nanoparticle conductive tracks on nanostructured paper compared with those on plastic substrates , 2013 .

[21]  E. Johan Foster,et al.  Recent advances in nanocellulose for biomedical applications , 2015 .

[22]  W. Thielemans,et al.  Surface modification of cellulose nanocrystals. , 2014, Nanoscale.

[23]  M. Roman Toxicity of Cellulose Nanocrystals: A Review , 2015 .

[24]  Zhiqiang Fang,et al.  Transparent paper: fabrications, properties, and device applications , 2014 .

[25]  W. Gindl-Altmutter,et al.  Effect of addition of microfibrillated cellulose to urea-formaldehyde on selected adhesive characteristics and distribution in particle board , 2016, Cellulose.

[26]  A. W. Carpenter,et al.  Cellulose nanomaterials in water treatment technologies. , 2015, Environmental science & technology.

[27]  Jo Anne Shatkin,et al.  Cellulose nanomaterials: life cycle risk assessment, and environmental health and safety roadmap , 2015 .

[28]  Jeremy J. Baumberg,et al.  Digital Color in Cellulose Nanocrystal Films , 2014, ACS applied materials & interfaces.

[29]  E. Ganjian,et al.  Manufacturing of bacterial nano-cellulose reinforced fiber−cement composites , 2015 .

[30]  T. Hjelt,et al.  Thin coatings for paper by foam coating , 2014 .

[31]  Sean McGinnis,et al.  Nanocellulose Life Cycle Assessment , 2013 .

[32]  L. Heath,et al.  Cellulose nanowhisker aerogels , 2010 .

[33]  Leandro Lorenzelli,et al.  Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review , 2015, IEEE Sensors Journal.

[34]  Qinglin Wu,et al.  Cellulose Nanoparticles: Structure–Morphology–Rheology Relationships , 2015 .

[35]  F. Cotana,et al.  Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. , 2013, Carbohydrate polymers.

[36]  Y. Davoudpour,et al.  Production and modification of nanofibrillated cellulose using various mechanical processes: a review. , 2014, Carbohydrate polymers.

[37]  Akira Isogai,et al.  Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials , 2013, Journal of Wood Science.

[38]  Olli Ikkala,et al.  Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities , 2008 .

[39]  P. Zavattieri,et al.  Anisotropy of the elastic properties of crystalline cellulose Iβ from first principles density functional theory with Van der Waals interactions , 2013, Cellulose.

[40]  A. Martini,et al.  Tensile strength of Iβ crystalline cellulose predicted by molecular dynamics simulation , 2014, Cellulose.

[41]  L. Lucia,et al.  A fundamental investigation of the microarchitecture and mechanical properties of tempo-oxidized nanofibrillated cellulose (NFC)-based aerogels , 2012, Cellulose.

[42]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[43]  Qinglin Wu,et al.  Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. , 2015, ACS applied materials & interfaces.

[44]  K. Oksman,et al.  Review of the recent developments in cellulose nanocomposite processing , 2016 .

[45]  B. Hsiao,et al.  Ultrafine polysaccharide nanofibrous membranes for water purification. , 2011, Biomacromolecules.

[46]  J. Bras,et al.  Production of cellulose nanofibrils: A review of recent advances , 2016 .

[47]  Jo Anne Shatkin,et al.  Market projections of cellulose nanomaterial-enabled products - Part 2: Volume estimates , 2014 .

[48]  Dieter Klemm,et al.  Nanocelluloses: a new family of nature-based materials. , 2011, Angewandte Chemie.

[49]  L. Bergström,et al.  Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films , 2014 .

[50]  Alain Dufresne,et al.  Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges , 2014 .

[51]  M. Weigl,et al.  Particle board and oriented strand board prepared with nanocellulose-reinforced adhesive , 2012 .

[52]  Paul Gatenholm,et al.  Bacterial Nanocellulose as a Renewable Material for Biomedical Applications , 2010 .

[53]  Janne Laine,et al.  Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength , 2010 .

[54]  Thorsten Wahlers,et al.  Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes , 2009 .

[55]  Sandeep Kumar,et al.  Melt processing of PVAc-Cellulose nanocrystal nanocomposites, Production and applications of cellulose nanomaterials , 2013 .

[56]  F. Brockman,et al.  Alexa fluor-labeled fluorescent cellulose nanocrystals for bioimaging solid cellulose in spatially structured microenvironments. , 2015, Bioconjugate chemistry.

[57]  Balbir Singh Kaith,et al.  Cellulose-Based Bio- and Nanocomposites: A Review , 2011 .

[58]  W. Thielemans,et al.  Permselective nanostructured membranes based on cellulose nanowhiskers , 2009 .

[59]  P. Baglioni,et al.  Cement: a two thousand year old nano-colloid. , 2011, Journal of colloid and interface science.

[60]  Y. She,et al.  Particulate reinforcement and formaldehyde adsorption of modified nanocrystalline cellulose in urea-formaldehyde resin adhesive , 2013 .

[61]  María Blanca Roncero Vivero,et al.  Inter-laboratory comparisons of hexenuronic acid measurements in kraft eucalyptus pulps using a UV-Vis spectroscopic method , 2014 .

[62]  D. Bousfield,et al.  Roll-to-Roll Processed Cellulose Nanofiber Coatings , 2016 .

[63]  W. Thielemans,et al.  Biodegradability of organic nanoparticles in the aqueous environment. , 2011, Chemosphere.

[64]  Julien Bras,et al.  Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review. , 2012, Carbohydrate polymers.

[65]  W. Marsden I and J , 2012 .

[66]  Dieter Klemm,et al.  Bacterial synthesized cellulose — artificial blood vessels for microsurgery , 2001 .

[67]  Liangbing Hu,et al.  Transparent nanopaper with tailored optical properties. , 2013, Nanoscale.

[68]  F. Pacheco-Torgal,et al.  Cementitious building materials reinforced with vegetable fibres : a review , 2011 .

[69]  Madhu Kaushik,et al.  Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis , 2016 .

[70]  W. Hamad,et al.  Cellulose reinforced polymer composites and nanocomposites: a critical review , 2013, Cellulose.

[71]  Yanyun Zhao,et al.  Investigation of the mechanisms of using metal complexation and cellulose nanofiber/sodium alginate layer-by-layer coating for retaining anthocyanin pigments in thermally processed blueberries in aqueous media. , 2015, Journal of agricultural and food chemistry.

[72]  N. Durán,et al.  Review of cellulose nanocrystals patents: preparation, composites and general applications. , 2012, Recent patents on nanotechnology.

[73]  Haisheng Chen,et al.  Rheological behaviour of nanofluids containing tube / rod-like nanoparticles , 2009 .

[74]  Jaehwan Kim,et al.  Review of nanocellulose for sustainable future materials , 2015, International Journal of Precision Engineering and Manufacturing-Green Technology.

[75]  Paul Gatenholm,et al.  Bacterial cellulose-based materials and medical devices: current state and perspectives , 2011, Applied Microbiology and Biotechnology.

[76]  Julien Bras,et al.  Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications , 2010 .

[77]  Bernard Kippelen,et al.  Recyclable organic solar cells on cellulose nanocrystal substrates , 2013, Scientific Reports.

[78]  E. J. Foster,et al.  NIST-TAPPI Workshop on Measurement Needs for Cellulose Nanomaterial , 2015 .

[79]  Jo Anne Shatkin,et al.  Market projections of cellulose nanomaterial-enabled products − Part 1: Applications , 2014 .

[80]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[81]  P. Gañán,et al.  Vegetable nanocellulose in food science: A review , 2016 .

[82]  Kimberly E. Kurtis,et al.  Innovations in cement-based materials: Addressing sustainability in structural and infrastructure applications , 2015 .

[83]  Jari Vartiainen,et al.  Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose , 2011 .

[84]  Kristin Syverud,et al.  Cellulose nanofibrils: Challenges and possibilities as a paper additive or coating material – A review , 2014 .

[85]  L. Fernández-Carrasco,et al.  Wet/Dry Cycling Durability of Cement Mortar Composites Reinforced with Micro- and Nanoscale Cellulose Pulps , 2015 .

[86]  Zhijiang Ye,et al.  Thermal conductivity in nanostructured films: from single cellulose nanocrystals to bulk films. , 2014, Biomacromolecules.

[87]  Weidong Zhou,et al.  High-performance green flexible electronics based on biodegradable cellulose nanofibril paper , 2015, Nature Communications.