Odd asymmetric factorization of Wiener-Hopf plus Hankel operators on variable exponent Lebesgue spaces
暂无分享,去创建一个
[1] S. Samko,et al. Integral Operators in Non-Standard Function Spaces , 2016 .
[2] S. Samko,et al. Hardy-type Operators in Variable Exponent Lebesgue Spaces , 2016 .
[3] A. S. Silva,et al. Interplay of Wiener--Hopf and Hankel operators with almost periodic Fourier symbols on standard and variable exponent Lebesgue spaces , 2015 .
[4] D. Kapanadze,et al. Mixed boundary value problems of diffraction by a half‐plane with an obstacle perpendicular to the boundary , 2014 .
[5] A. S. Silva,et al. Invertibility criteria for Wiener–Hopf plus Hankel operators with different almost periodic Fourier symbol matrices , 2013 .
[6] I. Spitkovsky,et al. On singular integral operators with semi-almost periodic coefficients on variable Lebesgue spaces , 2011, 1105.0407.
[7] A. S. Silva,et al. Invertibility of Matrix Wiener–Hopf plus Hankel Operators with Symbols Producing a Positive Numerical Range , 2009 .
[8] L. Castro,et al. Invertibility characterization of Wiener-Hopf plus Hankel operators via odd asymmetric factorizations , 2009 .
[9] D. Kapanadze,et al. The impedance boundary-value problem of diffraction by a strip , 2008 .
[10] L. Castro,et al. Wiener-Hopf plus Hankel operators on the real line with unitary and sectorial symbols , 2005, math/0511128.
[11] T. Ehrhardt. Factorization theory for Toeplitz plus Hankel operators and singular integral operators with flip , 2004 .
[12] T. Ehrhardt. Invertibility theory for Toeplitz plus Hankel operators and singular integral operators with flip , 2004 .
[13] L. Castro. Regularity of convolution type operators with PC symbols in Bessel potential spaces over two finite intervals , 2003 .
[14] D. Cruz-Uribe,et al. The maximal function on variable spaces. , 2003 .
[15] E. Basor,et al. Factorization theory for a class of Toeplitz + Hankel operators , 2002, math/0204038.
[16] S. Samko,et al. Equations with Involutive Operators , 2001 .
[17] S. Samko. Convolution type operators in lp (x) , 1998 .
[18] F. Speck,et al. Regularity Properties and Generalized Inverses of Delta-Related Operators , 1998 .
[19] F. Speck,et al. On the Characterization of the Intermediate Space in Generalized Factorizations , 1995 .
[20] H. Bart,et al. Matricial Coupling and Equivalence After Extension , 1992 .
[21] Jiří Rákosník,et al. On spaces $L^{p(x)}$ and $W^{k, p(x)}$ , 1991 .
[22] W. Orlicz,et al. Über konjugierte Exponentenfolgen , 1931 .
[23] F. Speck. INVERSION OF MATRIX CONVOLUTION TYPE OPERATORS WITH SYMMETRY , 2022 .