Odd asymmetric factorization of Wiener-Hopf plus Hankel operators on variable exponent Lebesgue spaces

The main goal of this paper is to obtain an invertibility criterion for Wiener-Hopf plus Hankel operators acting between variable exponent Lebesgue spaces on the real line. This is obtained by a so-called odd asymmetric factorization which is applied to the Fourier symbols of the operators under study.

[1]  S. Samko,et al.  Integral Operators in Non-Standard Function Spaces , 2016 .

[2]  S. Samko,et al.  Hardy-type Operators in Variable Exponent Lebesgue Spaces , 2016 .

[3]  A. S. Silva,et al.  Interplay of Wiener--Hopf and Hankel operators with almost periodic Fourier symbols on standard and variable exponent Lebesgue spaces , 2015 .

[4]  D. Kapanadze,et al.  Mixed boundary value problems of diffraction by a half‐plane with an obstacle perpendicular to the boundary , 2014 .

[5]  A. S. Silva,et al.  Invertibility criteria for Wiener–Hopf plus Hankel operators with different almost periodic Fourier symbol matrices , 2013 .

[6]  I. Spitkovsky,et al.  On singular integral operators with semi-almost periodic coefficients on variable Lebesgue spaces , 2011, 1105.0407.

[7]  A. S. Silva,et al.  Invertibility of Matrix Wiener–Hopf plus Hankel Operators with Symbols Producing a Positive Numerical Range , 2009 .

[8]  L. Castro,et al.  Invertibility characterization of Wiener-Hopf plus Hankel operators via odd asymmetric factorizations , 2009 .

[9]  D. Kapanadze,et al.  The impedance boundary-value problem of diffraction by a strip , 2008 .

[10]  L. Castro,et al.  Wiener-Hopf plus Hankel operators on the real line with unitary and sectorial symbols , 2005, math/0511128.

[11]  T. Ehrhardt Factorization theory for Toeplitz plus Hankel operators and singular integral operators with flip , 2004 .

[12]  T. Ehrhardt Invertibility theory for Toeplitz plus Hankel operators and singular integral operators with flip , 2004 .

[13]  L. Castro Regularity of convolution type operators with PC symbols in Bessel potential spaces over two finite intervals , 2003 .

[14]  D. Cruz-Uribe,et al.  The maximal function on variable spaces. , 2003 .

[15]  E. Basor,et al.  Factorization theory for a class of Toeplitz + Hankel operators , 2002, math/0204038.

[16]  S. Samko,et al.  Equations with Involutive Operators , 2001 .

[17]  S. Samko Convolution type operators in lp (x) , 1998 .

[18]  F. Speck,et al.  Regularity Properties and Generalized Inverses of Delta-Related Operators , 1998 .

[19]  F. Speck,et al.  On the Characterization of the Intermediate Space in Generalized Factorizations , 1995 .

[20]  H. Bart,et al.  Matricial Coupling and Equivalence After Extension , 1992 .

[21]  Jiří Rákosník,et al.  On spaces $L^{p(x)}$ and $W^{k, p(x)}$ , 1991 .

[22]  W. Orlicz,et al.  Über konjugierte Exponentenfolgen , 1931 .

[23]  F. Speck INVERSION OF MATRIX CONVOLUTION TYPE OPERATORS WITH SYMMETRY , 2022 .