The high power impulse magnetron sputtering discharge as an ionized physical vapor deposition tool

Various magnetron sputtering tools have been developed that provide a high degree of ionization of the sputtered vapor referred to as ionized physical vapor deposition (IPVD). The ions can be controlled with respect to energy and direction as they arrive to the growth surface which allows for increased control of film properties during growth. Here, the design parameters for IPVD systems are briefly reviewed. The first sputter based IPVD systems utilized a secondary plasma source between the target and the substrate in order to generate a highly ionized sputtered vapor. High power impulse magnetron sputtering (HiPIMS) is a recent sputtering technique that utilizes IPVD where a high density plasma is created by applying high power pulses at low frequency and low duty cycle to a magnetron sputtering device. A summary of the key experimental findings for the HiPIMS discharge is given. Measurements of the temporal and spatial behavior of the plasma parameters indicate electron density peak, that expands from the target with a fixed velocity. The discharge develops from an inert sputtering gas dominated to a sputtered vapor dominated during the pulse. The high electron density results in a high degree of ionization of the deposition material.

[1]  Arutiun P. Ehiasarian,et al.  Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion , 2007 .

[2]  Jeffrey Hopwood,et al.  Metal ion deposition from ionized mangetron sputtering discharge , 1994 .

[3]  Z. Radzimski,et al.  Sustained self‐sputtering using a direct current magnetron source , 1993 .

[4]  D. Christie Target material pathways model for high power pulsed magnetron sputtering , 2005 .

[5]  R. Snyders,et al.  The physical reason for the apparently low deposition rate during high-power pulsed magnetron sputtering , 2008 .

[6]  S. Konstantinidis,et al.  Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges , 2006 .

[7]  E. Wallin,et al.  Hysteresis-free reactive high power impulse magnetron sputtering , 2008 .

[8]  Zhehui Wang,et al.  Hollow cathode magnetron , 1999 .

[9]  J. Alami,et al.  Spatial electron density distribution in a high-power pulsed magnetron discharge , 2005, IEEE Transactions on Plasma Science.

[10]  A. Ehiasarian,et al.  Plasma dynamic in chromium and titanium HIPIMS discharges , 2008 .

[11]  S. Bugaev,et al.  Investigation of a high-current pulsed magnetron discharge initiated in the low-pressure diffuse arc plasma , 1996, Proceedings of 17th International Symposium on Discharges and Electrical Insulation in Vacuum.

[12]  J. Musil,et al.  Ion flux characteristics in high-power pulsed magnetron sputtering discharges , 2007 .

[13]  J. Andersson,et al.  Self-sputtering far above the runaway threshold: an extraordinary metal-ion generator. , 2009, Physical review letters.

[14]  J. Alami,et al.  High Power Impulse Magnetron Sputtering Discharges and Thin Film Growth: A Brief Review , 2005 .

[15]  J. Andersson,et al.  Observation of Ti4+ ions in a high power impulse magnetron sputtering plasma , 2008 .

[16]  J. Gudmundsson,et al.  Plasma parameters in a planar dc magnetron sputtering discharge of argon and krypton , 2008 .

[17]  J. Alami,et al.  Plasma dynamics in a highly ionized pulsed magnetron discharge , 2005 .

[18]  A. Ehiasarian,et al.  Origins of ion energy distribution function (IEDF) in high power impulse magnetron sputtering (HIPIMS) plasma discharge , 2008 .

[19]  J. Alami,et al.  Spatial and temporal behavior of the plasma parameters in a pulsed magnetron discharge , 2002 .

[20]  J. Goree,et al.  Observation of two-temperature electrons in a sputtering magnetron plasma , 1991 .

[21]  U. Helmersson,et al.  Guiding the deposition flux in an ionized magnetron discharge , 2006 .

[22]  M. Wuttig,et al.  Process characteristics and film properties upon growth of TiOx films by high power pulsed magnetron sputtering , 2007 .

[23]  S. Konstantinidis,et al.  Ion composition produced by high power impulse magnetron sputtering discharges near the substrate , 2008 .

[24]  U. Helmersson,et al.  On the electron energy in the high power impulse magnetron sputtering discharge , 2009 .

[25]  J. Vlček,et al.  Highly ionized fluxes of sputtered titanium atoms in high-power pulsed magnetron discharges , 2008 .

[26]  Seitaro Matsuo,et al.  An electron cyclotron resonance plasma deposition technique employing magnetron mode sputtering , 1988 .

[27]  E. Wallin,et al.  Cross-field ion transport during high power impulse magnetron sputtering , 2008 .

[28]  J. Hopwood,et al.  Magnetron sputter deposition with high levels of metal ionization , 1993 .

[29]  J. Vlček,et al.  Electron energy distributions and plasma parameters in high-power pulsed magnetron sputtering discharges , 2009 .

[30]  A. Ehiasarian,et al.  Time‐Resolved Ionisation Studies of the High Power Impulse Magnetron Discharge in Mixed Argon and Nitrogen Atmosphere , 2007 .

[31]  J. Lim,et al.  Mechanical properties of titanium nitride coatings deposited by inductively coupled plasma assisted direct current magnetron sputtering , 2000 .

[32]  André Anders,et al.  Gasless sputtering: Opportunities for ultraclean metallization, coatings in space, and propulsion , 2008 .

[33]  J. Gudmundsson Ionized physical vapor deposition (IPVD): magnetron sputtering discharges , 2008 .

[34]  Arutiun P. Ehiasarian,et al.  Ionization of sputtered metals in high power pulsed magnetron sputtering , 2005 .

[35]  J. Hopwood Ionized physical vapor deposition of integrated circuit interconnects , 1998 .

[36]  K. Gylfason,et al.  Ion-acoustic solitary waves in a high power pulsed magnetron sputtering discharge , 2005 .

[37]  J. Schneider,et al.  CRYSTALLINE ALUMINA DEPOSITED AT LOW TEMPERATURES BY IONIZED MAGNETRON SPUTTERING , 1997 .

[38]  A. Anders Self-sputtering runaway in high power impulse magnetron sputtering: The role of secondary electrons and multiply charged metal ions , 2008 .

[39]  D. Music,et al.  Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces , 2005 .

[40]  J. Andersson,et al.  High power impulse magnetron sputtering : Current-voltage-time characteristics indicate the onset of sustained self-sputtering , 2007 .

[41]  W. Sproul,et al.  Power supply with arc handling for high peak power magnetron sputtering , 2004 .

[42]  Wetzel,et al.  Cross-section measurements for electron-impact ionization of atoms. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[43]  K. Ashtiani,et al.  Ionized physical-vapor deposition using a hollow-cathode magnetron source for advanced metallization , 2000 .

[44]  J. In,et al.  Measurements of electron energy distribution functions and electron transport in the downstream region of an unbalanced dc magnetron discharge , 2004 .

[45]  U. Helmersson,et al.  Ionized physical vapor deposition (IPVD): A review of technology and applications , 2006 .

[46]  J. Musil,et al.  Unbalanced magnetrons and new sputtering systems with enhanced plasma ionization , 1991 .

[47]  U. Helmersson,et al.  The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge , 2006 .

[48]  J. Han,et al.  Velocity distribution of neutral species during magnetron sputtering by Fabry–Perot interferometry , 2008 .

[49]  E. Wallin,et al.  Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering , 2007 .

[50]  P. Vašina,et al.  Experimental study of a pre-ionized high power pulsed magnetron discharge , 2007 .

[51]  J. Schneider,et al.  Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge , 2000 .

[52]  Xin-lu Deng,et al.  Characterization of CNx films prepared by twinned ECR plasma source enhanced DC magnetron sputtering , 2001 .

[53]  D. Horwat,et al.  Spatial distribution of average charge state and deposition rate in high power impulse magnetron sputtering of copper , 2008 .

[54]  M. Wuttig,et al.  On the deposition rate in a high power pulsed magnetron sputtering discharge , 2006 .

[55]  J. Schneider,et al.  A novel pulsed magnetron sputter technique utilizing very high target power densities , 1999 .

[56]  J. Alami,et al.  Evolution of the electron energy distribution and plasma parameters in a pulsed magnetron discharge , 2001 .

[57]  L. Hultman,et al.  Influence of high power densities on the composition of pulsed magnetron plasmas , 2002 .