Estimates of the asymptotic Nikolskii constants for spherical polynomials

Let $\Pi_n^d$ denote the space of spherical polynomials of degree at most $n$ on the unit sphere $\mathbb{S}^d\subset \mathbb{R}^{d+1}$ that is equipped with the surface Lebesgue measure $d\sigma$ normalized by $\int_{\mathbb{S}^d} \, d\sigma(x)=1$. This paper establishes a close connection between the asymptotic Nikolskii constant, $$ \mathcal{L}^\ast(d):=\lim_{n\to \infty} \frac 1 {\dim \Pi_n^d} \sup_{f\in \Pi_n^d} \frac { \|f\|_{L^\infty(\mathbb{S}^d)}}{\|f\|_{L^1(\mathbb{S}^d)}},$$ and the following extremal problem: $$ \mathcal{I}_\alpha:=\inf_{a_k} \Bigl\| j_{\alpha+1} (t)- \sum_{k=1}^\infty a_k j_{\alpha} \bigl( q_{\alpha+1,k}t/q_{\alpha+1,1}\bigr)\Bigr\|_{L^\infty(\mathbb{R}_+)} $$ with the infimum being taken over all sequences $\{a_k\}_{k=1}^\infty\subset \mathbb{R}$ such that the infinite series converges absolutely a.e. on $\mathbb{R}_+$. Here $j_\alpha $ denotes the Bessel function of the first kind normalized so that $j_\alpha(0)=1$, and $\{q_{\alpha+1,k}\}_{k=1}^\infty$ denotes the strict increasing sequence of all positive zeros of $j_{\alpha+1}$. We prove that for $\alpha\ge -0.272$, $$\mathcal{I}_\alpha= \frac{\int_{0}^{q_{\alpha+1,1}}j_{\alpha+1}(t)t^{2\alpha+1}\,dt}{\int_{0}^{q_{\alpha+1,1}}t^{2\alpha+1}\,dt}= {}_{1}F_{2}\Bigl(\alpha+1;\alpha+2,\alpha+2;-\frac{q_{\alpha+1,1}^{2}}{4}\Bigr). $$ As a result, we deduce that the constant $\mathcal{L}^\ast(d)$ goes to zero exponentially fast as $d\to\infty$: \[ 0.5^d\le \mathcal{L}^{*}(d)\le (0.857\cdots)^{d\,(1+\varepsilon_d)} \ \ \ \ \ \text{with $\varepsilon_d =O(d^{-2/3})$.} \]

[1]  C. W. Clenshaw,et al.  The special functions and their approximations , 1972 .

[2]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[3]  S. Tikhonov,et al.  On Sharp Constants in Bernstein–Nikolskii Inequalities , 2017 .

[4]  Zvi Ziegler,et al.  Polynomials of extremal Lp-norm on the L∞-unit sphere , 1976 .

[5]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[6]  V. Temlyakov,et al.  Remez-Type and Nikol’skii-Type Inequalities: General Relations and the Hyperbolic Cross Polynomials , 2017 .

[7]  D. Jackson Certain problems of closest approximation , 1933 .

[8]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[9]  Mark Spanier,et al.  Extremal Signatures , 2016, 1609.03987.

[10]  A. Pinkus,et al.  L1-Approximation and Finding Solutions with Small Support , 2012 .

[11]  F. Dai,et al.  Nikolskii constants for polynomials on the unit sphere , 2017, Journal d'Analyse Mathématique.

[12]  Zeev Ditzian,et al.  Ul'yanov and Nikol'skii-type inequalities , 2005, J. Approx. Theory.

[13]  D. Lubinsky,et al.  Lp Christoffel functions, Lp universality, and Paley-Wiener spaces , 2015 .

[14]  Henry Cohn,et al.  The sphere packing problem in dimension 8The sphere packing problem in dimension 8 , 2016, 1603.04246.

[15]  Ralph P. Boas,et al.  OF ENTIRE FUNCTIONS , 2016 .

[16]  Henry Cohn,et al.  New upper bounds on sphere packings I , 2001, math/0110009.

[17]  V. Arestov,et al.  Nikol’skii Inequality Between the Uniform Norm and Integral Norm with Bessel Weight for Entire Functions of Exponential Type on the Half-Line , 2018 .

[18]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[19]  Roderick Wong,et al.  “Best possible” upper and lower bounds for the zeros of the Bessel function _{}() , 1999 .

[20]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[21]  K. Soundararajan,et al.  Fourier optimization and prime gaps , 2017, Commentarii Mathematici Helvetici.

[22]  John M. Danskin,et al.  Approximation of functions of several variables and imbedding theorems , 1975 .

[23]  Vladimir I. Levenshtein,et al.  On designs in compact metric spaces and a universal bound on their size , 1998, Discret. Math..

[24]  M. Viazovska The sphere packing problem in dimension 8The sphere packing problem in dimension 8 , 2016, 1603.04246.

[25]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[26]  R. J. Nessel,et al.  Nikolskii-type inequalities for trigonometric polynomials and entire functions of exponential type , 1978, Journal of the Australian Mathematical Society.

[27]  Asymptotic Behavior of Nikolskii Constants for Polynomials on the Unit Circle , 2015 .

[28]  S. M. Nikol'skii,et al.  APPROXIMATION OF FUNCTIONS ON THE SPHERE , 1988 .

[29]  M. Nikolskii,et al.  Approximation of Functions of Several Variables and Embedding Theorems , 1971 .

[30]  Y. Malykhin,et al.  Concentration of the -norm of trigonometric polynomials and entire functions , 2014 .

[31]  Entire functions that deviate least from zero in the uniform and the integral metrics with a weight , 2015 .

[32]  Daan Huybrechs,et al.  APPROXIMATING SMOOTH, MULTIVARIATE FUNCTIONS ON IRREGULAR DOMAINS , 2018, Forum of Mathematics, Sigma.

[33]  Gergo Nemes,et al.  On the large argument asymptotics of the Lommel function via Stieltjes transforms , 2014, Asymptot. Anal..

[34]  V. Arestov,et al.  Nikol’skii inequality for algebraic polynomials on a multidimensional Euclidean sphere , 2014 .

[35]  Yuan Xu,et al.  Approximation Theory and Harmonic Analysis on Spheres and Balls , 2013 .

[36]  Extremum problems for entire functions of exponential spherical type , 2000 .

[37]  Extremum problems for functions with small support , 1996 .

[38]  V. Arestov Inequality of different metrics for trigonometric polynomials , 1980 .

[39]  Harold S. Shapiro,et al.  Topics in Approximation Theory , 1971 .