Spatiotemporal variations in vertical gravity gradients at the Campi Flegrei caldera (Italy): a case for source multiplicity during unrest?

SUMMARY We present an evaluation of residual vertical gravity‐height change gradients obtained from gravimetric and elevation data between 1982 and 2000 at the Campi Flegrei caldera (CFc) in Italy. Spatial and temporal variations in the gradients are indicative of multiple causative sources during unrest, in particular for ground subsidence from 1988 onwards. Supported by results obtained from time-series inversion for the period 1988‐2000 using a random search approach of a purely elastic earth model and a genetic algorithm accounting for elastic-gravitational effects, we propose a centre of dilatation undergoing predominantly pressure changes yet negligible mass changes as the dominant cause for caldera deflation. Mass fluctuations in randomly active secondary sources along the periphery of the CFc can be best explained by dynamic changes along the caldera boundary (ring) faults.

[1]  A. Eggers Residual gravity changes and eruption magnitudes , 1987 .

[2]  Kristy F. Tiampo,et al.  Viscoelastic displacement and gravity changes due to point magmatic intrusions in a gravitational layered solid earth , 2001 .

[3]  John B. Rundle,et al.  Static elastic‐gravitational deformation of a layered half space by point couple sources , 1980 .

[4]  John J. Dvorak,et al.  Recent Ground Movement and Seismic Activity in Campi Flegrei , 1991 .

[5]  John B. Rundle,et al.  Deformation, gravity, and potential changes due to volcanic loading of the crust , 1982 .

[6]  L. Lirer,et al.  The 1538 Monte Nuovo eruption (Campi Flegrei, Italy) , 1987 .

[7]  J. Gottsmann,et al.  Unrest at the Campi Flegrei caldera (Italy): A critical evaluation of source parameters from geodetic data inversion , 2006 .

[8]  G. Fornaro,et al.  Modeling surface deformation observed with synthetic aperture radar interferometry at Campi Flegrei caldera , 2001 .

[9]  James E. Murray,et al.  The mechanics of unrest at Long Valley caldera, California: 1. Modeling the geometry of the source using GPS, leveling and two-color EDM data , 2003 .

[10]  Giovanna Berrino,et al.  Ground deformation and gravity changes accompanying the 1982 Pozzuoli uplift , 1984 .

[11]  J. Rundle,et al.  On the relative importance of self‐gravitation and elasticity in modeling volcanic ground deformation and gravity changes , 2006 .

[12]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[13]  M. Bonafede,et al.  Modelling gravity variations consistent with ground deformation in the Campi Flegrei caldera (Italy) , 1998 .

[14]  Kristy F. Tiampo,et al.  Spherical and ellipsoidal volcanic sources at Long Valley caldera, California, using a genetic algorithm inversion technique , 2000 .

[15]  John B. Rundle,et al.  Programs to compute deformation due to a magma intrusion in elastic-gravitational layered Earth models , 1997 .

[16]  A. Selvadurai,et al.  Plasticity and Geomechanics: Contents , 2002 .

[17]  K. Tiampo,et al.  New Results at Mayon, Philippines, from a Joint Inversion of Gravity and Deformation Measurements , 2004 .

[18]  M. A. Di Vito,et al.  The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration , 1996 .

[19]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[20]  John B. Rundle,et al.  FORTRAN program to compute displacement, potential, and gravity changes resulting from a magma intrusion in a multilayered earth model , 1994 .

[21]  John B. Rundle,et al.  Gravity changes and deformation due to a magmatic intrusion in a two‐layered crustal model , 1994 .

[22]  J. Gottsmann,et al.  Deflation during caldera unrest: constraints on subsurface processes and hazard prediction from gravity–height data , 2002 .

[23]  Hazel Rymer,et al.  Volcanic eruption prediction: Magma chamber physics from gravity and deformation measurements , 2000 .

[24]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[25]  John R. Rice,et al.  Local changes in gravity resulting from deformation , 1979 .

[26]  Kristy F. Tiampo,et al.  Volcanic source inversion using a genetic algorithm and an elastic-gravitational layered earth model for magmatic intrusions , 2004, Comput. Geosci..

[27]  Massimo D'Antonio,et al.  Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy) , 1999 .

[28]  John B. Rundle,et al.  Gravity changes and the Palmdale Uplift , 1978 .

[29]  A. Selvadurai,et al.  Elasticity and Geomechanics , 1996 .

[30]  D. Castagnolo,et al.  A physical appraisal of a new aspect of bradyseism: The miniuplifts , 2003 .

[31]  The Phlegraean Fields , 1897 .

[32]  K. Tiampo,et al.  On the interpretation of vertical gravity gradients produced by magmatic intrusions , 2005 .

[33]  J. Gottsmann,et al.  Unrest at Campi Flegrei: A contribution to the magmatic versus hydrothermal debate from inverse and finite element modeling , 2006 .

[34]  J. Gottsmann,et al.  Hazard assessment during caldera unrest at the Campi Flegrei, Italy: a contribution from gravity–height gradients , 2003 .

[35]  M. L. Sbar,et al.  Stress pattern near the San Andreas Fault, Palmdale, California, from near‐surface in situ measurements , 1979 .

[36]  Giovanna Berrino,et al.  Gravity−height correlations for unrest at calderas , 1992 .

[37]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[38]  S. Saunders The possible contribution of circumferential fault intrusion to caldera resurgence , 2004 .

[39]  C. W. Roberts,et al.  The mechanics of unrest at Long Valley caldera, California. 2. Constraining the nature of the source using geodetic and micro-gravity data , 2003 .

[40]  Giovanna Berrino,et al.  Gravity changes induced by height-mass variations at the Campi Flegrei caldera , 1994 .

[41]  Wenke Sun,et al.  Spatiotemporal gravity changes at Miyakejima Volcano, Japan: Caldera collapse, explosive eruptions and magma movement , 2002 .

[42]  F. Sigmundsson,et al.  Net gravity decrease at Askja volcano, Iceland: constraints on processes responsible for continuous caldera deflation, 1988–2003 , 2005 .

[43]  M. Rosi,et al.  The phlegraean fields: Structural evolution, volcanic history and eruptive mechanisms , 1983 .

[44]  K. Mogi Relations between the Eruptions of Various Volcanoes and the Deformations of the Ground Surfaces around them , 1958 .