Calorimetric study of geopolymer binders based on natural pozzolan

[1]  A. Allahverdi,et al.  Influence of calcium aluminate cement on geopolymerization of natural pozzolan , 2016 .

[2]  J. Provis,et al.  Advances in understanding alkali-activated materials , 2015 .

[3]  P. Monteiro,et al.  Advances in understanding hydration of Portland cement , 2015 .

[4]  John L. Provis,et al.  Durability of Alkali‐Activated Materials: Progress and Perspectives , 2014 .

[5]  John L. Provis,et al.  Alkali activated materials : state-of-the-art report, RILEM TC 224-AAM , 2014 .

[6]  Hao Wang,et al.  Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silica , 2013 .

[7]  N. Neithalath,et al.  Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends , 2013 .

[8]  Neil J Henson,et al.  In situ X-ray pair distribution function analysis of geopolymer gel nanostructure formation kinetics. , 2013, Physical chemistry chemical physics : PCCP.

[9]  Frank Bullen,et al.  Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin wi , 2012 .

[10]  Olivier Diat,et al.  Structural Evolution during geopolymerization from an early age to consolidated material. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[11]  G. Ye,et al.  The effect of activating solution on the mechanical strength, reaction rate, mineralogy, and microstructure of alkali-activated fly ash , 2012, Journal of Materials Science.

[12]  Ali Allahverdi,et al.  Efflorescence control in geopolymer binders based on natural pozzolan , 2012 .

[13]  Gilles Mertens,et al.  Supplementary Cementitious Materials , 2012 .

[14]  A. Fernández-Jiménez,et al.  Effect of Sodium Silicate on Calcium Aluminate Cement Hydration in Highly Alkaline Media: A Microstructural Characterization , 2011 .

[15]  Zuhua Zhang,et al.  Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry , 2009 .

[16]  K. Ikeda,et al.  Alkaline Activation of Blends of Metakaolin and Calcium Aluminate , 2008 .

[17]  S. Kurajica,et al.  Dehydration of a layered double hydroxide – C2AH8 , 2007 .

[18]  E. Kadri,et al.  Compressive strength of mortar containing natural pozzolan under various curing temperature , 2007 .

[19]  J. Deventer,et al.  Geopolymerisation kinetics. 1. In situ energy-dispersive X-ray diffractometry , 2007 .

[20]  J. Wastiels,et al.  Reaction mechanism, kinetics and high temperature transformations of geopolymers , 2007 .

[21]  J.S.J. van Deventer,et al.  Geopolymerisation kinetics. 2. Reaction kinetic modelling , 2007 .

[22]  J. Deventer,et al.  39K NMR of Free Potassium in Geopolymers , 2006 .

[23]  I. Burgar,et al.  Geopolymer formation processes at room temperature studied by 29Si and 27Al MAS-NMR , 2005 .

[24]  P. Duxson,et al.  Effect of Alkali Cations on Aluminum Incorporation in Geopolymeric Gels , 2005 .

[25]  K. Folliard,et al.  Heat of Hydration Models for Cementitious Materials , 2005 .

[26]  Y. S. Zhang,et al.  Hydration process of potassium polysialate (K-PSDS) geopolymer cement , 2005 .

[27]  Anton K. Schindler,et al.  Effect of Temperature on Hydration of Cementitious Materials , 2004 .

[28]  H. Rahier,et al.  Low-temperature synthesized aluminosilicate glasses Part IV Modulated DSC study on the effect of particle size of metakaolinite on the production of inorganic polymer glasses , 2003 .

[29]  P. Cox,et al.  The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time , 2003 .

[30]  P. Cox,et al.  The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. , 2003, Chemical reviews.

[31]  Gilles Chanvillard,et al.  Determining the apparent activation energy of concrete Ea: numerical simulations of the heat of hydration of cement , 2002 .

[32]  S. Alonso,et al.  Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio , 2001 .

[33]  S. Alonso,et al.  Calorimetric study of alkaline activation of calcium hydroxide–metakaolin solid mixtures , 2001 .

[34]  M. Blanco-Varela,et al.  Influence of the starting kaolin on alkali-activated materials based on metakaolin. Study of the reaction parameters by isothermal conduction calorimetry , 2000 .

[35]  Gilles Chanvillard,et al.  CONCRETE STRENGTH ESTIMATION AT EARLY AGES: MODIFICATION OF THE METHOD OF EQUIVALENT AGE , 1997 .

[36]  Francisca Puertas,et al.  Alkali-activated slag cements: Kinetic studies , 1997 .

[37]  J. Wastiels,et al.  Low-temperature synthesized aluminosilicate glasses , 1996 .

[38]  J. Wastiels,et al.  Low-temperature synthesized aluminosilicate glasses , 1996 .

[39]  P. Brown,et al.  Calorimetric Study of Cement Blends Containing Fly Ash, Silica Fume, and Slag at Elevated Temperatures , 1994 .

[40]  X. Zhongzi,et al.  Kinetic study on hydration of alkali-activated slag , 1993 .

[41]  J. Davidovits Geopolymers : inorganic polymeric new materials , 1991 .

[42]  R. Krstulovič,et al.  MICROCALORIMETRY IN THE CEMENT HYDRATION PROCESS , 1989 .

[43]  C. A. Langton,et al.  Early stage hydration of slag-cement , 1983 .

[44]  D. M. Roy,et al.  Hydration, Structure, and Properties of Blast Furnace SlagCements, Mortars, and Concrete , 1982 .