Piezoelectric materials for high temperature transducers and actuators

Piezoelectric sensors and actuators are a mature technology, commonplace amongst a plethora of industrial fields including automotive, maritime and non-destructive testing. However the environments that these devices are required to serve in are becoming more demanding, with temperatures being driven higher to increase efficiencies and reduce shut-downs. Materials to survive these temperatures have been the focus of many research groups over the last decade, but there still remains no standard for the measurement of piezoelectric materials at high temperature. This is required to effectively determine comparable Figures of Merit into which devices can be successfully designed. As part of a recent European effort to establish metrological techniques for high temperature evaluation of electro-mechanical properties, we present here a review of the most promising high temperature polycrystalline materials. Where their properties allow operation above that of the ubiquitous commercial material lead zirconate titanate, as well as work done to modify a promising high temperature system, for use as a material standard.

[1]  H. Schmid,et al.  Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3 , 1990 .

[2]  Mahesh Kumar,et al.  Ferroelectricity in a pure BiFeO3 ceramic , 2000 .

[3]  Exceptionally large piezoelectric strains in BiFeO3–(K0.5Bi0.5)TiO3–PbTiO3 ceramics , 2013 .

[4]  Shujun Zhang,et al.  Piezoelectric Materials for High Temperature Sensors , 2011 .

[5]  Neil M. White,et al.  Fabrication of high temperature surface acoustic wave devices for sensor applications , 2005 .

[6]  M. Francombe,et al.  Structural, dielectric and optical properties of ferroelectric lead metaniobate , 1958 .

[7]  Jacob L. Jones,et al.  Stress-induced structural changes in La-doped BiFeO3–PbTiO3 high-temperature piezoceramics , 2010 .

[8]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[9]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[10]  J. P. Remeika,et al.  The growth and ferroelectric properties of high resistivity single crystals of lead titanate , 1970 .

[11]  J. Cho,et al.  Piezoelectric and Dielectric Properties of Lead-Free (1-x)(Bi0.5K0.5)TiO3-xBiFeO3 Ceramics , 2010 .

[12]  R. Newnham,et al.  Materials for high temperature acoustic and vibration sensors: A review , 1994 .

[13]  C. Choy,et al.  Evaluation of the material parameters of piezoelectric materials by various methods , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[14]  C. Randall,et al.  Dielectric and piezoelectric properties of niobium-modified BiInO_3–PbTiO_3 perovskite ceramics with high Curie temperatures , 2005 .

[15]  Thomas R. Shrout,et al.  Piezoelectric accelerometers for ultrahigh temperature application , 2010 .

[16]  I. Reaney,et al.  Crystal and domain structure of the BiFeO3-PbTiO3 solid solution , 2003 .

[17]  C. Randall,et al.  Recent developments in high Curie temperature perovskite single crystals , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[18]  Shujun Zhang,et al.  High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective , 2012 .

[19]  Joseph Johnson,et al.  High-Temperature Piezoelectric Sensing , 2013, Sensors.

[20]  N. Setter,et al.  Microstructure, Electrical Conductivity, and Piezoelectric Properties of Bismuth Titanate , 1996, Journal of the American Ceramic Society.

[21]  Ronald J. Pelias,et al.  Front matter , 2017, 2017 IEEE International Symposium on Consumer Electronics (ISCE).

[22]  A. Bell Ferroelectrics: The role of ceramic science and engineering , 2008 .

[23]  E. Sawaguchi Ferroelectricity versus Antiferroelectricity in the Solid Solutions of PbZrO3 and PbTiO3 , 1953 .

[24]  J. Valasek Piezo-Electric and Allied Phenomena in Rochelle Salt , 1921 .

[25]  Zhi-guo Liu,et al.  Structure and piezoelectric properties of BiFeO3 and Bi0.92Dy0.08FeO3 multiferroics at high temperature , 2012 .

[26]  C. Randall,et al.  Crystal growth and characterization of new high Curie temperature (1−x)BiScO3–xPbTiO3 single crystals , 2002 .

[27]  Thomas R. Shrout,et al.  New High Temperature Morphotropic Phase Boundary Piezoelectrics Based on Bi(Me)O3–PbTiO3 Ceramics , 2001 .

[28]  S. Hoshino,et al.  X-Ray Study of the Phase Transition in Lead Titanate , 1950 .

[29]  Dragan Damjanovic,et al.  Materials for high temperature piezoelectric transducers , 1998 .

[30]  A. Bell,et al.  High temperature piezoelectric ceramics in the Bi(Mg1/2Ti1/2)O3-BiFeO3-BiScO3-PbTiO3 system , 2010 .

[31]  H. Kungl,et al.  In situ synchrotron diffraction investigation of morphotropic Pb[Zr1- xTix]O3 under an applied electric field , 2007 .

[32]  Q. Yin,et al.  Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics , 2002 .

[33]  A. Bell,et al.  Tailoring the structure and piezoelectric properties of BiFeO3-(K0.5Bi0.5)TiO3-PbTiO3 ceramics for high temperature applications , 2013 .

[34]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[35]  Mark J. Schulz,et al.  Piezoelectric Materials at Elevated Temperature , 2003 .

[36]  James F. Scott,et al.  Physics and Applications of Bismuth Ferrite , 2009 .

[37]  Y. Tokura,et al.  Magnetic control of ferroelectric polarization , 2003, Nature.

[38]  M. P. Singh,et al.  The single-phase multiferroic oxides: from bulk to thin film , 2005 .

[39]  X. Tan,et al.  BiFeO3–PbZrO3–PbTiO3 ternary system for high Curie temperature piezoceramics , 2011 .

[40]  A. Halliyal,et al.  Investigation of tetragonal distortion in the PbTiO_3–BiFeO_3 system by high-temperature x-ray diffraction , 1995 .

[41]  G. D. Achenbach,et al.  Dielectric Properties of Solid Solutions of BiFeO3 with Pb(Ti, Zr)O3 at High Temperature and High Frequency , 1968 .

[42]  P. Weaver,et al.  Temperature dependence of high field electromechanical coupling in ferroelectric ceramics , 2010 .

[43]  A. Kholkin,et al.  Investigation of structural, electrical and magnetic properties of BiFeO3–Bi(MgTi)O3–PbTiO3 ceramic system , 2009 .

[44]  W. Jo,et al.  Piezoelectric activity of (1-x)[0.35Bi(Mg1/2Ti1/2)O3-0.3BiFeO3-0.35BiScO3] - xPbTiO3 ceramics as a function of temperature , 2012, Journal of Electroceramics.

[45]  W. Jo,et al.  Effect of tetragonal distortion on ferroelectric domain switching: A case study on La-doped BiFeO3–PbTiO3 ceramics , 2010 .

[46]  Y. Matsuo,et al.  Effect of Grain Size on Microcracking in Lead Titanate Ceramics , 1966 .

[47]  J. J. Romero,et al.  Effects of Poling Process on KNN‐Modified Piezoceramic Properties , 2010 .

[48]  B. S. Kang,et al.  Lanthanum-substituted bismuth titanate for use in non-volatile memories , 1999, Nature.

[49]  Thomas R. Shrout,et al.  Manganese-modified BiScO3–PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor , 2005 .

[50]  Robert Gerson,et al.  The atomic structure of BiFeO3 , 1969 .

[51]  T. Gaylord,et al.  Lithium niobate: Summary of physical properties and crystal structure , 1985 .

[52]  R. Gerson,et al.  Mössbauer Effect in the Ferroelectric PbTiO3–BiFeO3 Solid Solutions , 1969 .

[53]  A. Bell,et al.  High-temperature (1−x)BiSc1∕2Fe1∕2O3-xPbTiO3 piezoelectric ceramics , 2005 .

[54]  A. Bell,et al.  Electric-field-induced phase switching in the lead free piezoelectric potassium sodium bismuth titanate , 2010 .

[55]  C. Randall,et al.  Preparation and Characterization of High Temperature Perovskite Ferroelectrics in the Solid-Solution (1-x)BiScO3–xPbTiO3 , 2002 .

[56]  Genshui Wang,et al.  Effects of sintering atmosphere on microstructure and electrical properties of BiScO3–PbTiO3 high-temperature piezoceramics , 2012 .

[57]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[58]  G. Goodman Ferroelectric Properties of Lead Metaniobate , 1953 .

[59]  Jinrong Cheng,et al.  Structural and dielectric properties of Ga-modified BiFeO3–PbTiO3 crystalline solutions , 2003 .

[60]  A. Steuwer,et al.  Analysis of elastic strain and crystallographic texture in poled rhombohedral PZT ceramics , 2006 .

[61]  A. Steuwer,et al.  Micromechanics of domain switching in rhombohedral PZT ceramics , 2008 .

[62]  C. Randall,et al.  Characterization of perovskite piezoelectric single crystals of 0.43BiScO3–0.57PbTiO3 with high Curie temperature , 2004 .

[63]  A. Bell,et al.  Reversible piezomagnetoelectric switching in bulk polycrystalline ceramics , 2014 .

[64]  A. Bell,et al.  Investigation of high Curie temperature (1−x)BiSc1−yFeyO3–xPbTiO3 piezoelectric ceramics , 2009 .

[65]  Hajime Nagata,et al.  Current status and prospects of lead-free piezoelectric ceramics , 2005 .

[66]  W. Jo,et al.  Shift in Morphotropic Phase Boundary in La-Doped BiFeO3–PbTiO3 Piezoceramics , 2009 .

[67]  D. Cann,et al.  High temperature piezoelectric ceramics based on (1 − x)[BiScO3 + Bi(Ni1/2Ti1/2)O3] − xPbTiO3 , 2012 .

[68]  P. Weaver,et al.  Surface mapping of field-induced piezoelectric strain at elevated temperature employing full-field interferometry , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[69]  W. Hackenberger,et al.  Piezoelectric Properties in the Perovskite BiScO3–PbTiO3–(Ba,Sr)TiO3 Ternary System , 2003 .

[70]  T. Grande,et al.  Electrical conductivity and thermopower of (1 - x) BiFeO(3) - xBi(0.5)K(0.5)TiO3 (x = 0.1, 0.2) ceramics near the ferroelectric to paraelectric phase transition. , 2015, Physical chemistry chemical physics : PCCP.

[71]  A. Bell,et al.  Change in periodicity of the incommensurate magnetic order towards commensurate order in bismuth ferrite lead titanate , 2010 .

[72]  Wolfgang Kleemann,et al.  Large bulk polarization and regular domain structure in ceramic BiFeO3 , 2007 .

[73]  Barbara Schneider,et al.  Basel , 2000 .

[74]  Stewart Sherrit,et al.  High Temperature, High Power Piezoelectric Composite Transducers , 2014, Sensors.