A global database of woody tissue carbon concentrations

[1]  M. Keller,et al.  Changes in global terrestrial live biomass over the 21st century , 2021, Science Advances.

[2]  Sean C. Thomas,et al.  Carbon fractions in the world’s dead wood , 2020, Nature Communications.

[3]  Sassan Saatchi,et al.  Mapping carbon accumulation potential from global natural forest regrowth , 2020, Nature.

[4]  Faris Rafi Almay Widagdo,et al.  Origin-based biomass allometric equations, biomass partitioning, and carbon concentration variations of planted and natural Larix gmelinii in northeast China , 2020 .

[5]  Khalid Rehman Hakeem,et al.  The global abundance of tree palms , 2020 .

[6]  Nadejda A. Soudzilovskaia,et al.  Global Root Traits (GRooT) Database , 2020, bioRxiv.

[7]  A. Thiombiano,et al.  Aboveground biomass allocation, additive biomass and carbon sequestration models for Pterocarpus erinaceus Poir. in Burkina Faso , 2020, Heliyon.

[8]  D. Guan,et al.  Improving understanding of carbon stock characteristics of Eucalyptus and Acacia trees in southern China through litter layer and woody debris , 2020, Scientific Reports.

[9]  David Kenfack,et al.  Asynchronous carbon sink saturation in African and Amazonian tropical forests , 2020, Nature.

[10]  C. Ochoa,et al.  Ecosystem carbon in relation to woody plant encroachment and control: Juniper systems in Oregon, USA , 2020 .

[11]  T. Sauer,et al.  Carbon and nitrogen accumulation within four black walnut alley cropping sites across Missouri and Arkansas, USA , 2020, Agroforestry Systems.

[12]  Denis Bastianelli,et al.  TRY plant trait database - enhanced coverage and open access. , 2019, Global change biology.

[13]  S. Bueno-López,et al.  Allometric equations for total aboveground dry biomass and carbon content of Pinus occidentalis trees , 2019 .

[14]  Wood density and carbon concentration of coarse woody debris in native forests, Brazil , 2019, Forest Ecosystems.

[15]  B. Oswald,et al.  Variation in carbon concentrations and allocations among Larix olgensis populations growing in three field environments , 2019, Annals of Forest Science.

[16]  Variation in Carbon Concentration and Allometric Equations for Estimating Tree Carbon Contents of 10 Broadleaf Species in Natural Forests in Northeast China , 2019, Forests.

[17]  K. Heal,et al.  Tissue-specific carbon concentration, carbon stock, and distribution in Cunninghamia lanceolata (Lamb.) Hook plantations at various developmental stages in subtropical China , 2019, Annals of Forest Science.

[18]  F. Bravo,et al.  Variation in carbon concentration and wood density for five most commonly grown native tree species in central highlands of Ethiopia: The case of Chilimo dry Afromontane forest , 2019, Journal of Sustainable Forestry.

[19]  R. Maiti,et al.  Wood carbon and nitrogen of 37 woody shrubs and trees in Tamaulipan thorn scrub, northeastern Mexico , 2019, Pakistan Journal of Botany.

[20]  Benjamin Smith,et al.  Role of forest regrowth in global carbon sink dynamics , 2019, Proceedings of the National Academy of Sciences.

[21]  Md. Zaheer Iqbal,et al.  Applicability of semi-destructive method to derive allometric model for estimating aboveground biomass and carbon stock in the Hill zone of Bangladesh , 2019, Journal of Forestry Research.

[22]  C. Peng,et al.  Variation in the functional traits of fine roots is linked to phylogenetics in the common tree species of Chinese subtropical forests , 2019, Plant and Soil.

[23]  Jie Yuan,et al.  Respiration of downed logs in pine and oak forests in the Qinling Mountains, China , 2018, Soil Biology and Biochemistry.

[24]  Sean C. Thomas,et al.  Global patterns in wood carbon concentration across the world’s trees and forests , 2018, Nature Geoscience.

[25]  K. O’Hara,et al.  Variation in Carbon Fraction, Density, and Carbon Density in Conifer Tree Tissues , 2018, Forests.

[26]  Juli G Pausas,et al.  A functional trait database for Mediterranean Basin plants , 2018, Scientific Data.

[27]  H. Beeckman,et al.  Inter- and intraspecific variation in mangrove carbon fraction and wood specific gravity in Gazi Bay, Kenya , 2018, Ecosphere.

[28]  Ning Han,et al.  Mapping Global Bamboo Forest Distribution Using Multisource Remote Sensing Data , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[29]  Guirui Yu,et al.  Different phylogenetic and environmental controls of first‐order root morphological and nutrient traits: Evidence of multidimensional root traits , 2018 .

[30]  Kira A. Borden,et al.  Root biomass variation of cocoa and implications for carbon stocks in agroforestry systems , 2019, Agroforestry Systems.

[31]  D. Godbold,et al.  Fine Root Morphology, Biochemistry and Litter Quality Indices of Fast- and Slow-growing Woody Species in Ethiopian Highland Forest , 2018, Ecosystems.

[32]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[33]  J. Flores,et al.  Tissue carbon concentration of 175 Mexican forest species , 2017 .

[34]  Yang Cao,et al.  Ecosystem C:N:P stoichiometry and carbon storage in plantations and a secondary forest on the Loess Plateau, China , 2017 .

[35]  C. Sanquetta,et al.  Variation in growth, wood density and carbon concentration in five tree and shrub species in Niger , 2017, New Forests.

[36]  Olivier Roupsard,et al.  Intraspecific Trait Variation and Coordination: Root and Leaf Economics Spectra in Coffee across Environmental Gradients , 2017, Front. Plant Sci..

[37]  Tree functional types simplify forest carbon stock estimates induced by carbon concentration variations among species in a subtropical area , 2017, Scientific Reports.

[38]  Jens Kattge,et al.  A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. , 2017, The New phytologist.

[39]  D. Godbold,et al.  Fine Root Morphology, Biochemistry and Litter Quality Indices of Fast- and Slow-growing Woody Species in Ethiopian Highland Forest , 2017, Ecosystems.

[40]  M. Gastauer,et al.  Updated angiosperm family tree for analyzing phylogenetic diversity and community structure , 2017 .

[41]  O. Phillips,et al.  Carbon concentration declines with decay class in tropical forest woody debris , 2017 .

[42]  H. Insam,et al.  Physico-chemical and microbiological evidence of exposure effects on Picea abies – Coarse woody debris at different stages of decay , 2017 .

[43]  C. Kim,et al.  Allometric equations to assess biomass, carbon and nitrogen content of black pine and red pine trees in southern Korea , 2017 .

[44]  M. Sebilo,et al.  Carbon and nitrogen dynamics in decaying wood: paleoenvironmental implications , 2017 .

[45]  C. Sanquetta,et al.  Wood density and carbon content in young teak individuals from Pará, Brazil , 2016 .

[46]  A. Tullus,et al.  The impact of former land-use type to above- and below-ground C and N pools in short-rotation hybrid aspen (Populus tremula L. × P. tremuloides Michx.) plantations in hemiboreal conditions , 2016 .

[47]  K. O’Hara,et al.  The influence of preparation method on measured carbon fractions in tree tissues. , 2016, Tree physiology.

[48]  Han Y. H. Chen,et al.  Variation in total and volatile carbon concentration among the major tree species of the boreal forest , 2016 .

[49]  R. Harrison,et al.  Factors controlling bark decomposition and its role in wood decomposition in five tropical tree species , 2016, Scientific Reports.

[50]  L. Schwendenmann,et al.  Allometric Models for Estimating Aboveground Biomass, Carbon and Nitrogen Stocks in Temperate Avicennia marina Forests , 2016, Wetlands.

[51]  R. Maiti,et al.  Wood Density of Ten Native Trees and Shrubs and Its Possible Relation with a Few Wood Chemical Compositions , 2016 .

[52]  Susan G. Letcher,et al.  Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics , 2016, Science Advances.

[53]  Anthony R. Taylor,et al.  Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change , 2016 .

[54]  Jonathan P. Sheppard,et al.  Above-ground woody biomass allocation and within tree carbon and nutrient distribution of wild cherry (Prunus avium L.) – a case study , 2016, Forest Ecosystems.

[55]  Susan G. Letcher,et al.  Biomass resilience of Neotropical secondary forests , 2016, Nature.

[56]  Jianwu Tang,et al.  Nutrient limitation of woody debris decomposition in a tropical forest: contrasting effects of N and P addition , 2016 .

[57]  K. Ahmadi,et al.  Above- and below-ground biomass and carbon stocks of different tree plantations in central Iran , 2016, Journal of Arid Land.

[58]  L. Finér,et al.  Decomposition and nutrient release from Norway spruce coarse roots and stumps - A 40-year chronosequence study , 2015 .

[59]  Y. Weng,et al.  Variations in carbon concentration, sequestration and partitioning among Betula platyphylla provenances , 2015 .

[60]  Y. Maruyama,et al.  Biotic and Abiotic Factors Controlling Respiration Rates of Above- and Belowground Woody Debris of Fagus crenata and Quercus crispula in Japan , 2015, PloS one.

[61]  Kajar Köster,et al.  Dead wood basic density, and the concentration of carbon and nitrogen for main tree species in managed hemiboreal forests , 2015 .

[62]  J. Battles,et al.  Decay patterns and carbon density of standing dead trees in California mixed conifer forests , 2015 .

[63]  Rodel D. Lasco,et al.  Changes in Forest Production, Biomass and Carbon: Results From the 2015 UN FAO Global Forest Resource Assessment , 2015 .

[64]  Adam R. Martin,et al.  Variation in carbon and nitrogen concentration among major woody tissue types in temperate trees , 2015 .

[65]  M. Soares,et al.  Variability of carbon content in mangrove species: Effect of species, compartments and tidal frequency , 2015 .

[66]  M. Pompa-García,et al.  Carbon concentration in structures of Arctostaphylos pungens HBK: an alternative CO2 sink in forests. , 2015 .

[67]  P. Cruz,et al.  Funciones alométricas de contenido de carbono para quillay, peumo, espino y litre , 2015 .

[68]  Koen Van Laer,et al.  Current status and future challenges , 2015 .

[69]  Patrikk John Martins,et al.  Teores de carbono em espécies da floresta ombrófila mista e efeito do grupo ecológico , 2014 .

[70]  M. Pompa-García,et al.  Concentración de carbono en Pinus cembroides Zucc: Fuente potencial de mitigación del calentamiento global , 2014 .

[71]  Genxu Wang,et al.  Variations in the live biomass and carbon pools of Abies georgei along an elevation gradient on the Tibetan Plateau, China , 2014 .

[72]  M. Kleyer,et al.  Internal and external regulation of plant organ stoichiometry. , 2014, Plant biology.

[73]  Kira A. Borden,et al.  Estimating coarse root biomass with ground penetrating radar in a tree-based intercropping system , 2014, Agroforestry Systems.

[74]  Jinsheng Xie,et al.  Patterns of mass, carbon and nitrogen in coarse woody debris in five natural forests in southern China , 2014, Annals of Forest Science.

[75]  J. S. Rubio-Asensio,et al.  Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). , 2014, Journal of plant physiology.

[76]  David C. Tank,et al.  Three keys to the radiation of angiosperms into freezing environments , 2013, Nature.

[77]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[78]  L. Schwendenmann,et al.  Carbon accumulation by native trees and soils in an urban park, Auckland , 2014 .

[79]  E. J. T. Garza,et al.  Concentración de carbono en especies del bosque de pino-encino en la Sierra Madre Oriental , 2018 .

[80]  Adam R. Martin,et al.  Size-dependent changes in leaf and wood chemical traits in two Caribbean rainforest trees. , 2013, Tree physiology.

[81]  A. Burton,et al.  Variation in wood density and carbon content of tropical plantation tree species from Ghana , 2013, New forests.

[82]  G. Nabuurs,et al.  First signs of carbon sink saturation in European forest biomass , 2013 .

[83]  Yong Zhao,et al.  Size-dependent changes in wood chemical traits: a comparison of neotropical saplings and large trees , 2013, AoB Plants.

[84]  B. Durkaya,et al.  Estimation of above-ground biomass and sequestered carbon of Taurus Cedar (Cedrus libani L.) in Antalya, Turkey , 2013 .

[85]  P. Drapeau,et al.  Chemical transformations in downed logs and snags of mixed boreal species during decomposition , 2013 .

[86]  M. Harmon,et al.  Carbon concentration of standing and downed woody detritus: Effects of tree taxa, decay class, position, and tissue type , 2013 .

[87]  C. Giardina,et al.  Coarse woody debris carbon storage across a mean annual temperature gradient in tropical montane wet forest , 2013 .

[88]  Zhenyuan Lu,et al.  The taxonomic name resolution service: an online tool for automated standardization of plant names , 2013, BMC Bioinformatics.

[89]  T. K. Jana,et al.  Wood chemistry and density: an analog for response to the change of carbon sequestration in mangroves. , 2012, Carbohydrate polymers.

[90]  C. Takenaka,et al.  Wood density and carbon and nitrogen concentrations in deadwood of Chamaecyparis obtusa and Cryptomeria japonica , 2012 .

[91]  R. Villar,et al.  Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions , 2012 .

[92]  Sean C. Thomas,et al.  Carbon Content of Tree Tissues: A Synthesis , 2012 .

[93]  C. Preston,et al.  Decomposition and change in N and organic composition of small-diameter Douglas-fir woody debris over 23 years. , 2012 .

[94]  H. Dalitz,et al.  Relations between wood variables and how they relate to tree size variables of tropical African tree species , 2012, Trees.

[95]  Variation in carbon concentration and basic density along stems of sessile oak (Quercus petraea (Matt.) Liebl.) and Pyrenean oak (Quercus pyrenaica Willd.) in the Cantabrian Range (NW Spain) , 2012, Annals of Forest Science.

[96]  K. O’Hara,et al.  Carbon density in managed coast redwood stands: implications for forest carbon estimation , 2012 .

[97]  Investigating biochemical processes to assess deadwood decay of beech and silver fir in Mediterranean mountain forests , 2012, Annals of Forest Science.

[98]  M. Dobbertin,et al.  Dead wood volume to dead wood carbon: the issue of conversion factors , 2012, European Journal of Forest Research.

[99]  J. Rey‐Benayas,et al.  Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica , 2012, New Forests.

[100]  F. Bravo,et al.  Carbon in heartwood, sapwood and bark along the stem profile in three Mediterranean Pinus species , 2011, Annals of Forest Science.

[101]  R. B. Jackson,et al.  A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.

[102]  Sean C. Thomas,et al.  A Reassessment of Carbon Content in Tropical Trees , 2011, PloS one.

[103]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[104]  M. Ashton,et al.  Seasonal variability of photosynthetic characteristics influences growth of eight tropical tree spec , 2011 .

[105]  J. Calvo-Alvarado,et al.  Productivity, aboveground biomass, nutrient uptake and carbon content in fast-growing tree plantations of native and introduced species in the Southern Region of Costa Rica , 2011 .

[106]  L. Heath,et al.  Methods and equations for estimating aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010 , 2011 .

[107]  M. Jeong,et al.  Biomass and Carbon Storage in an Age-Sequence of Korean Pine (Pinus koraiensis) Plantation Forests in Central Korea , 2011, Journal of Plant Biology.

[108]  L. Poorter,et al.  The trait contribution to wood decomposition rates of 15 Neotropical tree species. , 2010, Ecology.

[109]  João Santos Pereira,et al.  Biomass allometry and carbon factors for a Mediterranean pine (Pinus pinea L.) in Portugal , 2010 .

[110]  G. Powell,et al.  High-resolution forest carbon stocks and emissions in the Amazon , 2010, Proceedings of the National Academy of Sciences.

[111]  María Vanessa Lencinas,et al.  Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in Southern Patagonia , 2010 .

[112]  Carolyn Hull Sieg,et al.  A multi‐trait test of the leaf‐height‐seed plant strategy scheme with 133 species from a pine forest flora , 2010 .

[113]  J. Lousada,et al.  Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. , 2010, Bioresource technology.

[114]  Guoyi Zhou,et al.  Dynamics of coarse woody debris and decomposition rates in an old-growth forest in lower tropical China , 2010 .

[115]  J. Cornelissen,et al.  Evidence of the ‘plant economics spectrum’ in a subarctic flora , 2010 .

[116]  Andrea Polle,et al.  FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae , 2010, Wood Science and Technology.

[117]  R. B. Jackson,et al.  CO 2 emissions from forest loss , 2009 .

[118]  D. Tolunay Carbon concentrations of tree components, forest floor and understorey in young Pinus sylvestris stands in north-western Turkey , 2009 .

[119]  Gregory P. Asner,et al.  Tropical forest carbon assessment: integrating satellite and airborne mapping approaches , 2009 .

[120]  Chuankuan Wang,et al.  Carbon concentration variability of 10 Chinese temperate tree species , 2009 .

[121]  L. Severeid,et al.  Aboveground carbon biomass of plantation-grown American chestnut (Castanea dentata) in absence of blight , 2009 .

[122]  J. Chave,et al.  Towards a Worldwide Wood Economics Spectrum 2 . L E a D I N G D I M E N S I O N S I N W O O D F U N C T I O N , 2022 .

[123]  Sean C. Thomas,et al.  Increasing carbon storage in intact African tropical forests , 2009, Nature.

[124]  Z. Ouyang,et al.  Variation of carbon storage by different reforestation types in the hilly red soil region of southern China , 2008 .

[125]  Robert H. Whittaker,et al.  Classification of natural communities , 2008, The Botanical Review.

[126]  Clonal variation of carbon content in wood of Larix kaempferi (Japanese larch) , 2008, Journal of Wood Science.

[127]  S. C. Thomas,et al.  Wood carbon content of tree species in Eastern China: interspecific variability and the importance of the volatile fraction. , 2007, Journal of environmental management.

[128]  S. Fang,et al.  Biomass production and carbon sequestration potential in poplar plantations with different management patterns. , 2007, Journal of environmental management.

[129]  G. Ståhl,et al.  Biomass conversion factors (density and carbon concentration) by decay classes for dead wood of Pinus sylvestris, Picea abies and Betula spp. in boreal forests of Sweden , 2007 .

[130]  R. Schlaepfer,et al.  Log decay of Picea abies in the Swiss Jura Mountains of central Europe , 2007 .

[131]  I. Grechi,et al.  Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine , 2007 .

[132]  H. Mäkinen,et al.  Predicting the decomposition of Scots pine, Norway spruce, and birch stems in Finland. , 2006, Ecological applications : a publication of the Ecological Society of America.

[133]  L. Flanagan,et al.  Decomposition, δ13C, and the “lignin paradox” , 2006 .

[134]  C. Prescott,et al.  Biomass equations and carbon content of aboveground leafless biomass of hybrid poplar in Coastal British Columbia , 2006 .

[135]  F. Danjon,et al.  Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.) , 2006 .

[136]  C. Bourque,et al.  Carbon and biomass partitioning in balsam fir (Abies balsamea). , 2005, Tree physiology.

[137]  S. Archer,et al.  Above-ground biomass and carbon and nitrogen content of woody species in a subtropical thornscrub parkland , 2005 .

[138]  C. Nys,et al.  Above- and belowground distribution of dry matter and carbon biomass of Atlantic beech (Fagus sylvatica L.) in a time sequence , 2004 .

[139]  Christian Wirth,et al.  Evaluating tree carbon predictions for beech (Fagus sylvatica L.) in western Germany , 2004 .

[140]  L. Condron,et al.  Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris , 2004 .

[141]  J. Kort,et al.  Carbon reservoir and biomass in Canadian prairie shelterbelts , 1998, Agroforestry Systems.

[142]  R. Bol,et al.  Quantification of soil carbon inputs under elevated CO2: C3 plants in a C4 soil , 1995, Plant and Soil.

[143]  S. Lamlom,et al.  A reassessment of carbon content in wood: variation within and between 41 North American species , 2003 .

[144]  Catherine Potvin,et al.  Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species , 2003 .

[145]  T. Moore,et al.  Carbon storage of harvest-age teak (Tectona grandis) plantations, Panama , 2003 .

[146]  A. Schulte,et al.  Possible Effects of Altered Growth Behaviour of Norway Spruce (Picea abies) on Carbon Accounting , 2002 .

[147]  W. Currie,et al.  The Imprint of Land-use History: Patterns of Carbon and Nitrogen in Downed Woody Debris at the Harvard Forest , 2002, Ecosystems.

[148]  Sandra A. Brown Measuring carbon in forests: current status and future challenges. , 2002, Environmental pollution.

[149]  Mark W. Chase,et al.  Evolution of the angiosperms: calibrating the family tree , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[150]  R. Ceulemans,et al.  META-ANALYSIS OF MODEL PARAMETERS , 2000 .

[151]  P. De Angelis,et al.  Effects of elevated (CO2) on photosynthesis in European forest species: a meta-analysis of model parameters , 1999 .

[152]  Raija Laiho,et al.  The contribution of coarse woody debris to carbon, nitrogen, and phosphorus cycles in three Rocky Mountain coniferous forests , 1999 .

[153]  John R. Evans,et al.  The response of fast- and slow-growing Acacia species to elevated atmospheric CO2: an analysis of the underlying components of relative growth rate , 1999, Oecologia.

[154]  Jan Čermák,et al.  Above- and belowground phytomass and carbon storage in a Belgian Scots pine stand , 1999 .

[155]  Mark E. Harmon,et al.  Nutrient stores and dynamics of woody detritus in a boreal forest: modeling potential implications at the stand level , 1999 .

[156]  J. A. Trofymow,et al.  PMAS-NMR spectroscopy and chemical analysis of coarse woody debris in coastal forests of Vancouver Island , 1998 .

[157]  J. Frangi,et al.  Decomposition of Nothofagus fallen woody debris in forests of Tierra del Fuego, Argentina , 1997 .

[158]  Jukka Laine,et al.  Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland , 1997 .

[159]  J. A. Trofymow,et al.  Influence of micro- and macro-habitat factors on collembolan communities in Douglas-fir stumps during forest succession , 1995 .

[160]  P. Curtis,et al.  Atmospheric CO2, soil nitrogen and turnover of fine roots , 1995 .

[161]  William S. Curran,et al.  A/I: a synthesis , 1982, ACM-SE 20.

[162]  Gerald E. Lang,et al.  Loss of mass and chemical change in decaying boles of a subalpine balsam fir forest , 1980 .

[163]  Mehmet,et al.  BIOMASS EQUATIONS AND CHANGES IN CARBON STOCK IN AFFORESTED BLACK PINE ( Pinus nigra Arnold . subsp . pallasiana ( Lamb . ) Holmboe ) STANDS IN TURKEY , 2022 .