A finite algorithm for solving general quadratic problems

Here we propose a global optimization method for general, i.e. indefinite quadratic problems, which consist of maximizing a non-concave quadratic function over a polyhedron inn-dimensional Euclidean space. This algorithm is shown to be finite and exact in non-degenerate situations. The key procedure uses copositivity arguments to ensure escaping from inefficient local solutions. A similar approach is used to generate an improving feasible point, if the starting point is not the global solution, irrespective of whether or not this is a local solution. Also, definiteness properties of the quadratic objective function are irrelevant for this procedure. To increase efficiency of these methods, we employ pseudoconvexity arguments. Pseudoconvexity is related to copositivity in a way which might be helpful to check this property efficiently even beyond the scope of the cases considered here.

[1]  C. E. Lemke,et al.  QUADRATIC FORMS SEMI-DEFINITE OVER CONVEX CONES. , 1967 .

[2]  K. Borgwardt The Simplex Method: A Probabilistic Analysis , 1986 .

[3]  P. Pardalos,et al.  Checking local optimality in constrained quadratic programming is NP-hard , 1988 .

[4]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[5]  Immanuel M. Bomze,et al.  A Global Optimization Algorithm for Concave Quadratic Programming Problems , 1993, SIAM J. Optim..

[6]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[7]  Panos M. Pardalos,et al.  Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..

[8]  K. Borgwardt The Simplex Method: A Probabilistic Analysis , 1986 .

[9]  K. P. Hadeler,et al.  On copositive matrices , 1983 .

[10]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[11]  D. H. Martin Finite criteria for conditional definiteness of quadratic forms , 1981 .

[12]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[13]  Bela Martos,et al.  Nonlinear programming theory and methods , 1977 .

[14]  Panos M. Pardalos,et al.  Polynomial time algorithms for some classes of constrained nonconvex quadratic problems , 1990 .

[15]  J.-B. Hiriart-Urruty,et al.  From Convex Optimization to Nonconvex Optimization. Necessary and Sufficient Conditions for Global Optimality , 1989 .

[16]  Panos M. Pardalos,et al.  Constrained Global Optimization: Algorithms and Applications , 1987, Lecture Notes in Computer Science.