A finite algorithm for solving general quadratic problems
暂无分享,去创建一个
[1] C. E. Lemke,et al. QUADRATIC FORMS SEMI-DEFINITE OVER CONVEX CONES. , 1967 .
[2] K. Borgwardt. The Simplex Method: A Probabilistic Analysis , 1986 .
[3] P. Pardalos,et al. Checking local optimality in constrained quadratic programming is NP-hard , 1988 .
[4] Mokhtar S. Bazaraa,et al. Nonlinear Programming: Theory and Algorithms , 1993 .
[5] Immanuel M. Bomze,et al. A Global Optimization Algorithm for Concave Quadratic Programming Problems , 1993, SIAM J. Optim..
[6] Katta G. Murty,et al. Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..
[7] Panos M. Pardalos,et al. Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..
[8] K. Borgwardt. The Simplex Method: A Probabilistic Analysis , 1986 .
[9] K. P. Hadeler,et al. On copositive matrices , 1983 .
[10] R. Horst,et al. Global Optimization: Deterministic Approaches , 1992 .
[11] D. H. Martin. Finite criteria for conditional definiteness of quadratic forms , 1981 .
[12] Aimo A. Törn,et al. Global Optimization , 1999, Science.
[13] Bela Martos,et al. Nonlinear programming theory and methods , 1977 .
[14] Panos M. Pardalos,et al. Polynomial time algorithms for some classes of constrained nonconvex quadratic problems , 1990 .
[15] J.-B. Hiriart-Urruty,et al. From Convex Optimization to Nonconvex Optimization. Necessary and Sufficient Conditions for Global Optimality , 1989 .
[16] Panos M. Pardalos,et al. Constrained Global Optimization: Algorithms and Applications , 1987, Lecture Notes in Computer Science.