Expanding the scope of metal-free catalytic hydrogenation through frustrated Lewis pair design.

Two new frustrated Lewis acid—base catalyst systems with high reactivity are used in catalytic metal-free hydrogenations.

[1]  Zhi‐Xiang Wang,et al.  Computational design of metal-free catalysts for catalytic hydrogenation of imines. , 2010, Dalton transactions.

[2]  J. Bercaw,et al.  Homogeneous CO hydrogenation: dihydrogen activation involves a frustrated Lewis pair instead of a platinum complex. , 2010, Journal of the American Chemical Society.

[3]  S. Grimme,et al.  Neue Einblicke in den Mechanismus der Diwasserstoff‐Aktivierung durch frustrierte Lewis‐Paare , 2010 .

[4]  S. Grimme,et al.  The mechanism of dihydrogen activation by frustrated Lewis pairs revisited. , 2010, Angewandte Chemie.

[5]  Tülay Aslı Tumay,et al.  Metal-Free Frustrated Lewis Pair Catalyzed 1,4-Hydrogenation of Conjugated Metallocene Dienamines , 2010 .

[6]  O. Blacque,et al.  Activation of Terminal Alkynes by Frustrated Lewis Pairs , 2010 .

[7]  G. Erker,et al.  Frustrierte Lewis‐Paare: metallfreie Wasserstoffaktivierung und mehr , 2010 .

[8]  Douglas W Stephan,et al.  Frustrated Lewis pairs: metal-free hydrogen activation and more. , 2010, Angewandte Chemie.

[9]  Fang Huang,et al.  Computationally designed metal-free hydrogen activation site: reaching the reactivity of metal-ligand bifunctional hydrogenation catalysts. , 2010, Inorganic chemistry.

[10]  Dermot O'Hare,et al.  Non-metal-mediated homogeneous hydrogenation of CO2 to CH3OH. , 2009, Angewandte Chemie.

[11]  Y. M. Rhee,et al.  Dispersion-oriented soft interaction in a frustrated Lewis pair and the entropic encouragement effect in its formation. , 2009, Chemistry.

[12]  R. B. Sunoj,et al.  On the origin of reversible hydrogen activation by phosphine-boranes. , 2009, Chemistry.

[13]  O. Blacque,et al.  Metal-free hydrogen activation and hydrogenation of imines by 1,8-bis(dipentafluorophenylboryl)naphthalene. , 2009, Chemical communications.

[14]  Preston A. Chase,et al.  Frustrated Lewis pairs derived from N-heterocyclic carbenes and Lewis acids. , 2009, Dalton transactions.

[15]  O. Blacque,et al.  Metal-Free Hydrogen Activation by the Frustrated Lewis Pairs of ClB(C6F5)2 and HB(C6F5)2 and Bulky Lewis Bases , 2009 .

[16]  R. Fröhlich,et al.  Reactions of an intramolecular frustrated Lewis pair with unsaturated substrates: evidence for a concerted olefin addition reaction. , 2009, Journal of the American Chemical Society.

[17]  Martin Nieger,et al.  Experimental and theoretical treatment of hydrogen splitting and storage in boron–nitrogen systems , 2009 .

[18]  Wei Wu,et al.  The B-H...H-P dihydrogen bonding in ion pair complexes [(CF(3))(3)BH(-)][HPH(3-n)(Me)(n)(+)] (n = 0-3) and its implication in H(2) elimination and activation reactions. , 2009, The journal of physical chemistry. A.

[19]  Jon Nyhlén,et al.  On the possibility of catalytic reduction of carbonyl moieties with tris(pentafluorophenyl)borane and H2: a computational study. , 2009, Dalton transactions.

[20]  Jon Nyhlén,et al.  “Frustration” of Orbital Interactions in Lewis Base/Lewis Acid Adducts: A Computational Study of H2 Uptake by Phosphanylboranes R2P=BR′2 , 2009 .

[21]  Tibor András Rokob,et al.  Rationalizing the reactivity of frustrated Lewis pairs: thermodynamics of H(2) activation and the role of acid-base properties. , 2009, Journal of the American Chemical Society.

[22]  D. Stephan,et al.  Terminal alkyne activation by frustrated and classical Lewis acid/phosphine pairs. , 2009, Journal of the American Chemical Society.

[23]  T. Privalov The Role of Amine–B(C6F5)3 Adducts in the Catalytic Reduction of Imines with H2: A Computational Study , 2009 .

[24]  M. Ullrich,et al.  1,4-Addition reactions of frustrated Lewis pairs to 1,3-dienes. , 2009, Chemical communications.

[25]  Douglas W. Stephan,et al.  Lutidine/B(C6F5)3: at the boundary of classical and frustrated Lewis pair reactivity. , 2009, Journal of the American Chemical Society.

[26]  R. Fröhlich,et al.  Catalytic hydrogenation of sensitive organometallic compounds by antagonistic N/B Lewis pair catalyst systems. , 2009, Journal of the American Chemical Society.

[27]  A. Lough,et al.  Activation of H2 by frustrated Lewis pairs derived from mono- and bis-phosphinoferrocenes and B(C6F5)3. , 2009, Chemical communications.

[28]  R. Fröhlich,et al.  Metal-free dihydrogen activation chemistry: structural and dynamic features of intramolecular P/B pairs. , 2009, Dalton transactions.

[29]  T. Privalov Hydrogenation of imines by phosphonium borate zwitterions: a theoretical study. , 2009, Dalton transactions.

[30]  T. Privalov On the possibility of conversion of alcohols to ketones and aldehydes by phosphinoboranes R2PBR'R'': a computational study. , 2009, Chemistry.

[31]  I. Pápai,et al.  On the mechanism of B(C6F5)3-catalyzed direct hydrogenation of imines: inherent and thermally induced frustration. , 2009, Journal of the American Chemical Society.

[32]  M. Ullrich,et al.  Reversible, metal-free, heterolytic activation of H2 at room temperature. , 2009, Journal of the American Chemical Society.

[33]  I. Pápai,et al.  Mechanism of hydrogen activation by frustrated Lewis pairs: A molecular orbital approach† , 2009 .

[34]  R. Fröhlich,et al.  Heterolytic dihydrogen activation with the 1,8-bis(diphenylphosphino)naphthalene/B(C6F5)3 pair and its application for metal-free catalytic hydrogenation of silyl enol ethers. , 2008, Chemical communications.

[35]  Martin Nieger,et al.  Molecular tweezers for hydrogen: synthesis, characterization, and reactivity. , 2008, Journal of the American Chemical Society.

[36]  R. Fröhlich,et al.  Heterolytic Cleavage of Dihydrogen by Frustrated Lewis Pairs Derived from α-(Dimesitylphosphino)ferrocenes and B(C6F5)3† , 2008 .

[37]  R. Fröhlich,et al.  Metallfreie katalytische Hydrierung von Enaminen, Iminen und konjugierten Phosphinoalkenylboranen , 2008 .

[38]  Preston A. Chase,et al.  Hydrogen and amine activation by a frustrated Lewis pair of a bulky N-heterocyclic carbene and B(C6F5)3. , 2008, Angewandte Chemie.

[39]  Cristian G. Hrib,et al.  Heterolytic dihydrogen activation by a frustrated carbene-borane Lewis pair. , 2008, Angewandte Chemie.

[40]  R. Fröhlich,et al.  Metal-free catalytic hydrogenation of enamines, imines, and conjugated phosphinoalkenylboranes. , 2008, Angewandte Chemie.

[41]  S. Geier,et al.  Activation of H2 by phosphinoboranes R2PB(C6F5)2. , 2008, Journal of the American Chemical Society.

[42]  B. Rieger,et al.  Einfache heterolytische H2‐Aktivierung mit Aminen und B(C6F5)3 , 2008 .

[43]  M. Leskelä,et al.  Facile heterolytic H2 activation by amines and B(C6F5)3. , 2008, Angewandte Chemie.

[44]  I. Pápai,et al.  Concerted attack of frustrated Lewis acid-base pairs on olefinic double bonds: a theoretical study. , 2008, Chemical communications.

[45]  Shuhua Li,et al.  Unusual concerted Lewis acid-Lewis base mechanism for hydrogen activation by a phosphine-borane compound. , 2008, Inorganic chemistry.

[46]  Shuhua Li,et al.  A Novel Addition Mechanism for the Reaction of Frustrated Lewis Pairs with Olefins , 2008 .

[47]  Dianjun Chen,et al.  Metal-free catalytic hydrogenation of imines with tris(perfluorophenyl)borane. , 2008, Chemical communications.

[48]  Preston A. Chase,et al.  Lewis acid-catalyzed hydrogenation: B(C6F5)3-mediated reduction of imines and nitriles with H2. , 2008, Chemical communications.

[49]  Tibor András Rokob,et al.  Turning frustration into bond activation: a theoretical mechanistic study on heterolytic hydrogen splitting by frustrated Lewis pairs. , 2008, Angewandte Chemie.

[50]  R. Fröhlich,et al.  Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane-borane adduct. , 2007, Chemical communications.

[51]  Preston A. Chase,et al.  Metal-free catalytic hydrogenation. , 2007, Angewandte Chemie.

[52]  Gregory C. Welch,et al.  Reactivity of "frustrated Lewis pairs": three-component reactions of phosphines, a borane, and olefins. , 2007, Angewandte Chemie.

[53]  Gregory C. Welch,et al.  Facile heterolytic cleavage of dihydrogen by phosphines and boranes. , 2007, Journal of the American Chemical Society.

[54]  Jason D. Masuda,et al.  Reversible, Metal-Free Hydrogen Activation , 2006, Science.

[55]  M. Tilset,et al.  An Estimate of the Reduction Potential of B(C6F5)3 from Electrochemical Measurements on Related Mesityl Boranes , 2006 .

[56]  Preston A. Chase,et al.  Bifunctional Perfluoroaryl Boranes: Synthesis and Coordination Chemistry with Neutral Lewis Base Donors , 2006 .

[57]  A. Sironi,et al.  Complexes of tris(pentafluorophenyl)boron with nitrogen-containing compounds: Synthesis, reactivity and metallocene activation , 2006 .

[58]  G. Erker Tris(pentafluorophenyl)borane: a special boron Lewis acid for special reactions. , 2005, Dalton transactions.

[59]  F. Menger An alternative view of enzyme catalysis , 2005 .

[60]  W. Piers The Chemistry of Perfluoroaryl Boranes , 2005 .

[61]  W. Piers,et al.  Synthesis, structural characterization and reactivity of the amino borane 1-(NPh2)-2-[B(C6F5)2]C6H4 , 2003 .

[62]  W. Piers,et al.  Weaker Lewis acid, better catalytic activity: dual mechanisms in perfluoroarylborane-catalyzed allylstannation reactions. , 2003, Organic letters.

[63]  C. Santini,et al.  Formation and Characterization of Zwitterionic Stereoisomers from the Reaction of B(C6F5)3 and NEt2Ph: (E)‐ and (Z)‐[EtPhN+=CHCH2‐B−(C6F5)3] , 2002 .

[64]  T. Schubert,et al.  Hydrogenation without a transition-metal catalyst: on the mechanism of the base-catalyzed hydrogenation of ketones. , 2002, Journal of the American Chemical Society.

[65]  A. F. Barrero,et al.  Raney Nickel: An Efficient Reagent to Achieve the Chemoselective Hydrogenation of α,β-Unsaturated Carbonyl Compounds , 1999 .

[66]  A. Berkessel,et al.  Hydrogenation without a Metal Catalyst: An ab Initio Study on the Mechanism of the Metal-Free Hydrogenase from Methanobacterium thermoautotrophicum , 1998 .

[67]  H. Brown Chemical effects of steric strains , 1956 .