Robust multigrid solvers for the biharmonic problem in isogeometric analysis

Abstract In this paper, we develop multigrid solvers for the biharmonic problem in the framework of isogeometric analysis (IgA). In this framework, one typically sets up B-splines on the unit square or cube and transforms them to the domain of interest by a global smooth geometry function. With this approach, it is feasible to set up H 2 -conforming discretizations. We propose two multigrid methods for such a discretization, one based on Gauss–Seidel smoothing and one based on mass smoothing. We prove that both are robust in the grid size, the latter is also robust in the spline degree. Numerical experiments illustrate the convergence theory and indicate the efficiency of the proposed multigrid approaches, particularly of a hybrid approach combining both smoothers.

[1]  Clemens Hofreither,et al.  A robust multigrid method for Isogeometric Analysis in two dimensions using boundary correction , 2015, 1512.07091.

[2]  Giancarlo Sangalli,et al.  BPX-preconditioning for isogeometric analysis , 2013 .

[3]  Walter Zulehner,et al.  Schur complement preconditioners for multiple saddle point problems of block tridiagonal form with application to optimization problems , 2017 .

[4]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[5]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[6]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[7]  G. Burton Sobolev Spaces , 2013 .

[8]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[9]  Stefan Takacs,et al.  Robust approximation error estimates and multigrid solvers for isogeometric multi-patch discretizations , 2017, Mathematical Models and Methods in Applied Sciences.

[10]  Karl Scherer,et al.  New Upper Bound for the B-Spline Basis Condition Number , 1999 .

[11]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[12]  Michael S. Floater,et al.  Optimal Spline Spaces for $$L^2$$L2n-Width Problems with Boundary Conditions , 2017, 1709.02710.

[13]  W. Zulehner,et al.  On Full Multigrid Schemes for Isogeometric Analysis , 2016 .

[14]  M. R. Hanisch Multigrid preconditioning for the biharmonic Dirichlet problem , 1993 .

[15]  J. PESTANA,et al.  Efficient Block Preconditioning for a C1 Finite Element Discretization of the Dirichlet Biharmonic Problem , 2016, SIAM J. Sci. Comput..

[16]  Shangyou Zhang,et al.  An optimal order multigrid method for biharmonic,C1 finite element equations , 1989 .

[17]  Stefan Takacs,et al.  Convergence Analysis of All-at-Once Multigrid Methods for Elliptic Control Problems under Partial Elliptic Regularity , 2013, SIAM J. Numer. Anal..

[18]  Stefan Takacs,et al.  Approximation error estimates and inverse inequalities for B-splines of maximum smoothness , 2015, 1502.03733.

[19]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[20]  Magne Nordaas,et al.  Robust preconditioners for PDE-constrained optimization with limited observations , 2015 .

[21]  Jinchao Xu,et al.  Optimal Solvers for Fourth-Order PDEs Discretized on Unstructured Grids , 2014, SIAM J. Numer. Anal..

[22]  Jun Hu,et al.  Multigrid Methods for Hellan–Herrmann–Johnson Mixed Method of Kirchhoff Plate Bending Problems , 2015, Journal of Scientific Computing.

[23]  J. Kraus,et al.  Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.

[24]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[25]  Giancarlo Sangalli,et al.  Isogeometric Preconditioners Based on Fast Solvers for the Sylvester Equation , 2016, SIAM J. Sci. Comput..

[26]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[27]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[28]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[29]  Giancarlo Sangalli,et al.  Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.

[30]  Clemens Hofreither,et al.  Robust Multigrid for Isogeometric Analysis Based on Stable Splittings of Spline Spaces , 2016, SIAM J. Numer. Anal..

[31]  Susanne C. Brenner,et al.  An optimal-order nonconforming multigrid method for the Biharmonic equation , 1989 .