Polaronic Hole Localization and Multiple Hole Binding of Acceptors in Oxide Wide-Gap Semiconductors

Acceptor-bound holes in oxides often localize asymmetrically at one out of several equivalent oxygen ligands. Whereas Hartree-Fock (HF) theory overly favors such symmetry-broken polaronic hole localization in oxides, standard local-density (LD) calculations suffer from spurious delocalization among several oxygen sites. These opposite biases originate from the opposite curvatures of the energy as a function of the fractional occupation number n, i.e., d{sup 2}E/dn{sup 2} 0 in LD. We recover the correct linear behavior, d{sup 2}E/dn{sup 2}=0, that removes the (de)localization bias by formulating a generalized Koopmans condition. The correct description of oxygen hole localization reveals that the cation-site nominal single acceptors in ZnO, In{sub 2}O{sub 3}, and SnO{sub 2} can bind multiple holes.

[1]  A. Zunger,et al.  Electronic correlation in anion p orbitals impedes ferromagnetism due to cation vacancies in Zn chalcogenides. , 2009, Physical review letters.

[2]  Jingbo Li,et al.  Origin and enhancement of hole-induced ferromagnetism in first-row d0 semiconductors. , 2009, Physical review letters.

[3]  Alex Zunger,et al.  Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs , 2008 .

[4]  S. Sanvito,et al.  Predicting d 0 magnetism: Self-interaction correction scheme , 2008 .

[5]  W. Pickett,et al.  Magnetism from 2p states in alkaline earth monoxides : Trends with varying N impurity concentration , 2008, 0808.0924.

[6]  Matthias Scheffler,et al.  Sources of electrical conductivity in SnO2. , 2008, Physical review letters.

[7]  A. Zunger,et al.  Magnetic Interactions of Cr-Cr and Co-Co Impurity Pairs in ZnO within a Band-Gap Corrected Density-Functional Approach , 2008 .

[8]  Weitao Yang,et al.  Localization and delocalization errors in density functional theory and implications for band-gap prediction. , 2007, Physical review letters.

[9]  Alex Zunger,et al.  Origins of the p-Type Nature and Cation Deficiency in Cu2O and Related Materials , 2007 .

[10]  Alexander L. Shluger,et al.  Trapping, self-trapping and the polaron family , 2007 .

[11]  G. Sawatzky,et al.  Magnetizing oxides by substituting nitrogen for oxygen. , 2007, Physical review letters.

[12]  G. Scuseria,et al.  Exchange and correlation in open systems of fluctuating electron number , 2007, cond-mat/0702283.

[13]  Yanfa Yan,et al.  Doping of ZnO by group-IB elements , 2006 .

[14]  O. Schirmer,et al.  O− bound small polarons in oxide materials , 2006 .

[15]  M. Nolan,et al.  Hole localization in Al doped silica: A DFT + U description. , 2006, The Journal of chemical physics.

[16]  F. Bechstedt,et al.  Quasiparticle band structure based on a generalized Kohn-Sham scheme , 2006, cond-mat/0604447.

[17]  G. D. Watkins,et al.  Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K , 2005 .

[18]  C. Catlow,et al.  Hole localization in [AlO4]0 defects in silica materials. , 2005, The Journal of chemical physics.

[19]  M. Calandra,et al.  Density functional theory description of hole-trapping inSiO2: A self-interaction-corrected approach , 2004, cond-mat/0407750.

[20]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[21]  Jürgen Christen,et al.  Bound exciton and donor–acceptor pair recombinations in ZnO , 2004 .

[22]  K. Stokbro,et al.  Hole trapping at Al impurities in silica: a challenge for density functional theories. , 2001, Physical review letters.

[23]  G. Pacchioni,et al.  Theoretical description of hole localization in a quartz Al center: The importance of exact electron exchange , 2000 .

[24]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[25]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[26]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[27]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[28]  J. Perdew,et al.  Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy , 1982 .

[29]  A. Zunger,et al.  Ground- and excited-state properties of LiF in the local-density formalism , 1977 .

[30]  M. O'brien The structure of the colour centres in smoky quartz , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[31]  P. Sherwood,et al.  Point defects in ZnO. , 2007, Faraday discussions.

[32]  J. Schneider,et al.  Paramagnetische Resonanz eines photoempfindlichen Zentrums in Lithium-dotierten ZnO-Kristallen , 1963 .

[33]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .