Farming the genetic frontier

FOR MORE THAN TEN THOUSAND YEARS, farmers have improved their crops by letting nature do the breeding and then choosing the tastiest, hardiest, or most productive offspring. This ancient technique was accelerated in the last century through more systematic attempts to oversee the breeding and selection process. Today, however, new scientific techniques are making it possible to design crops with far greater precision and effect than ever before. The most controversial and important of these techniques are called "transgenic": they allow scientists to engineer new crops by splicing together particular genes rather than relying solely on the uncertain crosses that are the hallmark of traditional crop breeding. For some, the transgenic revolution in biotechnology is a horror. Tinkering with nature's order, they argue, will backfire when engineered genes escape to the wild and disrupt delicately balanced ecosystems. For others, plant engineering is a Promethean step forward that will lead to more nutritious, productive, and disease-resistant crops, which will in turn help alleviate global hunger and reduce the amount of land and pesticides used in agriculture.