Sufficient statistics and minimum variance estimates

Let the probability density of observations be denoted by φ( x | θ), where x stands for the variables and θ for the parameters. A function t of the observations is called an unbiased estimate of the function ψ(θ) of the parameters if where dx stands for the product of differentials.

[1]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[2]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[3]  R. Fisher Two New Properties of Mathematical Likelihood , 1934 .

[4]  C. R. Rao,et al.  Minimum variance and the estimation of several parameters , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  B. O. Koopman On distributions admitting a sufficient statistic , 1936 .

[6]  D. V. Widder,et al.  The Laplace Transform , 1943 .