Navigation Behavior Selection Using Generalized Stochastic Petri Nets for a Service Robot

Appropriate design and control of behaviors of mobile robots are important for their successful autonomous navigation in a real dynamic environment. This paper proposes a formal selection framework of multiple navigation behaviors for a service robot. In the presented approach, modeling, analysis, and performance evaluation are carried out based on generalized stochastic Petri nets (GSPNs). By adopting a probabilistic approach, the proposed framework helps the robot to select the most desirable navigation behavior in run time according to environmental conditions. Moreover, after mission completion, the robot evaluates its prior navigation performance from accumulated data, and automatically uses the results to improve its future operations. Also, GSPNs have several advantages over direct use of other modeling formalisms such as finite state automata (FSA) or Markov processes (MPs). We conduct experiments on real guidance tasks with visitors by implementing the framework in the guide robot Jinny at the National Science Museum of Korea. The results show that the proposed strategy is useful for a robot's selection of an appropriate navigation behavior in a dynamic environment.

[1]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[2]  Wolfram Burgard,et al.  Coastal navigation-mobile robot navigation with uncertainty in dynamic environments , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[3]  James Lyle Peterson,et al.  Petri net theory and the modeling of systems , 1981 .

[4]  김문상,et al.  The Autonomous Tour-Guide Robot Jinny , 2004 .

[5]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[6]  Alessandro Saffiotti,et al.  A Multivalued Logic Approach to Integrating Planning and Control , 1995, Artif. Intell..

[7]  Günther Schmidt,et al.  A new approach for context based exception handling in autonomous mobile service robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[8]  Hanspeter A. Mallot,et al.  Biomimetic robot navigation , 2000, Robotics Auton. Syst..

[9]  R. Pfeifer,et al.  A mobile robot employing insect strategies for navigation , 2000, Robotics Auton. Syst..

[10]  P. Maes How to Do the Right Thing , 1989 .

[11]  Matthias Scheutz,et al.  Architectural mechanisms for dynamic changes of behavior selection strategies in behavior-based systems , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[12]  Alan A. Desrochers,et al.  Performance evaluation of automated manufacturing systems using generalized stochastic Petri nets , 1990, IEEE Trans. Robotics Autom..

[13]  Kurt Konolige,et al.  A gradient method for realtime robot control , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[14]  Petter Ögren,et al.  A tractable convergent dynamic window approach to obstacle avoidance , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Jean-Arcady Meyer,et al.  BIOLOGICALLY BASED ARTIFICIAL NAVIGATION SYSTEMS: REVIEW AND PROSPECTS , 1997, Progress in Neurobiology.

[16]  A. Meystel Architectures for intelligent control systems: The science of autonomous intelligence , 1993, Proceedings of 8th IEEE International Symposium on Intelligent Control.

[17]  Woojin Chung,et al.  Tripodal Schematic Control Architecture for Integration of Multi-Functional Indoor Service Robots , 2006, IEEE Transactions on Industrial Electronics.

[18]  Julio Rosenblatt,et al.  DAMN: a distributed architecture for mobile navigation , 1997, J. Exp. Theor. Artif. Intell..

[19]  Ronald C. Arkin,et al.  Motor Schema — Based Mobile Robot Navigation , 1989, Int. J. Robotics Res..

[20]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[21]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[22]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[23]  Ruzena Bajcsy,et al.  Discrete Event Systems for autonomous mobile agents , 1994, Robotics Auton. Syst..

[24]  René David,et al.  Petri nets for modeling of dynamic systems: A survey , 1994, Autom..

[25]  Paolo Pirjanian Multiple objective behavior-based control , 2000, Robotics Auton. Syst..

[26]  Woojin Chung,et al.  Discrete-Status-Based Localization for Indoor Service Robots , 2006, IEEE Transactions on Industrial Electronics.

[27]  Paolo Pirjanian,et al.  Behavior Coordination Mechanisms - State-of-the-art , 1999 .

[28]  Ronald C. Arkin,et al.  Temporal coordination of perceptual algorithms for mobile robot navigation , 1994, IEEE Trans. Robotics Autom..

[29]  Jiacun Wang,et al.  Timed Petri Nets: Theory and Application , 1998 .

[30]  Woojin Chung,et al.  The autonomous tour-guide robot Jinny , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).