Constraint Handling in Multiobjective Evolutionary Optimization

This paper proposes a constraint handling technique for multiobjective evolutionary algorithms based on an adaptive penalty function and a distance measure. These two functions vary dependent upon the objective function value and the sum of constraint violations of an individual. Through this design, the objective space is modified to account for the performance and constraint violation of each individual. The modified objective functions are used in the nondominance sorting to facilitate the search of optimal solutions not only in the feasible space but also in the infeasible regions. The search in the infeasible space is designed to exploit those individuals with better objective values and lower constraint violations. The number of feasible individuals in the population is used to guide the search process either toward finding more feasible solutions or favor in search for optimal solutions. The proposed method is simple to implement and does not need any parameter tuning. The constraint handling technique is tested on several constrained multiobjective optimization problems and has shown superior results compared to some chosen state-of-the-art designs.

[1]  Yuren Zhou,et al.  An Adaptive Tradeoff Model for Constrained Evolutionary Optimization , 2008, IEEE Transactions on Evolutionary Computation.

[2]  Gary G. Yen,et al.  PSO-Based Multiobjective Optimization With Dynamic Population Size and Adaptive Local Archives , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[3]  Gary G. Yen,et al.  Multiple objective evolutionary algorithm for temporal linguistic rule extraction. , 2005 .

[4]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[5]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[6]  Abdollah Homaifar,et al.  Constrained Optimization Via Genetic Algorithms , 1994, Simul..

[7]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[8]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[9]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[10]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[11]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[12]  Tetsuyuki Takahama,et al.  Constrained Optimization by the ε Constrained Differential Evolution with Gradient-Based Mutation and Feasible Elites , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[13]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[14]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[15]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[16]  A. Osyczka,et al.  A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm , 1995 .

[17]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective optimization , 2011, WIREs Data Mining Knowl. Discov..

[18]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[19]  Gary G. Yen,et al.  Rank-density-based multiobjective genetic algorithm and benchmark test function study , 2003, IEEE Trans. Evol. Comput..

[20]  K. C. Seow,et al.  MULTIOBJECTIVE DESIGN OPTIMIZATION BY AN EVOLUTIONARY ALGORITHM , 2001 .

[21]  T. T. Binh MOBES : A multiobjective evolution strategy for constrained optimization problems , 1997 .

[22]  A.F. Gomez-Skarmeta,et al.  An evolutionary algorithm for constrained multi-objective optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[23]  Yong Wang,et al.  A constrained optimization evolutionary algorithm based on multiobjective optimization techniques , 2005, 2005 IEEE Congress on Evolutionary Computation.

[24]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[25]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[26]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[27]  Alan D. Christiansen,et al.  MOSES: A MULTIOBJECTIVE OPTIMIZATION TOOL FOR ENGINEERING DESIGN , 1999 .

[28]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[29]  Shang Gao,et al.  A self-adaptive linear evolutionary algorithm for solving constrained optimization problems , 2010 .

[30]  Gary G. Yen,et al.  A generic framework for constrained optimization using genetic algorithms , 2005, IEEE Transactions on Evolutionary Computation.

[31]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[32]  Masahiro Tanaka,et al.  GA-based decision support system for multicriteria optimization , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[33]  Jonathan A. Wright,et al.  Self-adaptive fitness formulation for constrained optimization , 2003, IEEE Trans. Evol. Comput..

[34]  Isao Ono,et al.  Constraint-Handling Method for Multi-objective Function Optimization: Pareto Descent Repair Operator , 2007, EMO.

[35]  Nicholas Young,et al.  Blended Ranking to Cross Infeasible Regions in ConstrainedMultiobjective Problems , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[36]  Andres Angantyr,et al.  Constrained optimization based on a multiobjective evolutionary algorithm , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[37]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[38]  Gary G. Yen,et al.  A Self Adaptive Penalty Function Based Algorithm for Constrained Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[39]  Khaled Rasheed,et al.  Constrained Multi-objective Optimization Using Steady State Genetic Algorithms , 2003, GECCO.

[40]  Gary G. Yen,et al.  Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation , 2003, IEEE Trans. Evol. Comput..

[41]  Peter J. Fleming,et al.  On the Evolutionary Optimization of Many Conflicting Objectives , 2007, IEEE Transactions on Evolutionary Computation.

[42]  Xin Yao,et al.  Constrained Evolutionary Optimization , 2003 .

[43]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[44]  Gary G. Yen,et al.  Using evolutionary algorithms for defining the sampling policy of complex n-partite networks , 2005, IEEE Transactions on Knowledge and Data Engineering.

[45]  Tetsuyuki Takahama,et al.  Constrained optimization by applying the /spl alpha/ constrained method to the nonlinear simplex method with mutations , 2005, IEEE Transactions on Evolutionary Computation.

[46]  Yong Wang,et al.  A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization , 2006, IEEE Transactions on Evolutionary Computation.