Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space

We demonstrate for the first time that ill-conditioned, non-smooth, constrained distributions in very high dimension, upwards of 100,000, can be sampled efficiently $\textit{in practice}$. Our algorithm incorporates constraints into the Riemannian version of Hamiltonian Monte Carlo and maintains sparsity. This allows us to achieve a mixing rate independent of smoothness and condition numbers. On benchmark data sets in systems biology and linear programming, our algorithm outperforms existing packages by orders of magnitude. In particular, we achieve a 1,000-fold speed-up for sampling from the largest published human metabolic network (RECON3D). Our package has been incorporated into the COBRA toolbox.

[1]  S. Vempala,et al.  Condition-number-independent Convergence Rate of Riemannian Hamiltonian Monte Carlo with Numerical Integrators , 2022, COLT.

[2]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[3]  P. Srivastava,et al.  On the mixing time of coordinate Hit-and-Run , 2020, Comb. Probab. Comput..

[4]  Santosh Vempala,et al.  Convergence of Gibbs Sampling: Coordinate Hit-and-Run Mixes Fast , 2020, Discrete & Computational Geometry.

[5]  S. Vempala,et al.  Reducing isotropy and volume to KLS: an o*(n3ψ2) volume algorithm , 2020, STOC.

[6]  Apostolos Chalkis,et al.  volesti: Volume Approximation and Sampling for Convex Polytopes in R , 2020, R J..

[7]  Tyler Maunu,et al.  Exponential ergodicity of mirror-Langevin diffusions , 2020, NeurIPS.

[8]  Yin Tat Lee,et al.  Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo , 2020, COLT.

[9]  Stephen J. Roberts,et al.  Introducing an Explicit Symplectic Integration Scheme for Riemannian Manifold Hamiltonian Monte Carlo , 2019, ArXiv.

[10]  Yin Tat Lee,et al.  The Randomized Midpoint Method for Log-Concave Sampling , 2019, NeurIPS.

[11]  Martin J. Wainwright,et al.  Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients , 2019, J. Mach. Learn. Res..

[12]  Anne Richelle,et al.  Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0 , 2019, Nature Protocols.

[13]  Noah D. Goodman,et al.  Pyro: Deep Universal Probabilistic Programming , 2018, J. Mach. Learn. Res..

[14]  Man-Chung Yue,et al.  Universal Barrier Is n-Self-Concordant , 2018, Math. Oper. Res..

[15]  Martin J. Wainwright,et al.  Log-concave sampling: Metropolis-Hastings algorithms are fast! , 2018, COLT.

[16]  Santosh S. Vempala,et al.  Convergence rate of Riemannian Hamiltonian Monte Carlo and faster polytope volume computation , 2017, STOC.

[17]  Michael I. Jordan,et al.  Underdamped Langevin MCMC: A non-asymptotic analysis , 2017, COLT.

[18]  Santosh S. Vempala,et al.  CHRR: coordinate hit-and-run with rounding for uniform sampling of constraint-based models , 2017, Bioinform..

[19]  Santosh S. Vempala,et al.  Geodesic walks in polytopes , 2016, STOC.

[20]  Santosh S. Vempala,et al.  A practical volume algorithm , 2016, Math. Program. Comput..

[21]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[22]  Roland Badeau,et al.  Stochastic Quasi-Newton Langevin Monte Carlo , 2016, ICML.

[23]  Philip Miller,et al.  BiGG Models: A platform for integrating, standardizing and sharing genome-scale models , 2015, Nucleic Acids Res..

[24]  Pauli Pihajoki,et al.  Explicit methods in extended phase space for inseparable Hamiltonian problems , 2014, 1411.3367.

[25]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[26]  Ronan M. T. Fleming,et al.  A community-driven global reconstruction of human metabolism , 2013, Nature Biotechnology.

[27]  Raquel Urtasun,et al.  A Family of MCMC Methods on Implicitly Defined Manifolds , 2012, AISTATS.

[28]  B. Palsson,et al.  Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods , 2012, Nature Reviews Microbiology.

[29]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[30]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[31]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[32]  Hariharan Narayanan,et al.  Randomized Interior Point methods for Sampling and Optimization , 2009, ArXiv.

[33]  Hariharan Narayanan,et al.  Random walks on polytopes and an affine interior point method for linear programming , 2009, STOC '09.

[34]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[35]  Eric Vigoda,et al.  Accelerating simulated annealing for the permanent and combinatorial counting problems , 2006, SODA '06.

[36]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[37]  Santosh S. Vempala,et al.  Hit-and-run from a corner , 2004, STOC '04.

[38]  Edith Cohen,et al.  Optimal oblivious routing in polynomial time , 2003, STOC '03.

[39]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[40]  M. Simonovits,et al.  Random walks and an O * ( n 5 ) volume algorithm for convex bodies , 1997 .

[41]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[42]  Reich Sebastian,et al.  Symplectic Integration of Constrained Hamiltonian Systems by Runge-Kutta Methods , 1993 .

[43]  A. Kennedy,et al.  Hybrid Monte Carlo , 1988 .

[44]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[45]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[46]  Miklós Simonovits,et al.  Random walks and an O*(n5) volume algorithm for convex bodies , 1997, Random Struct. Algorithms.

[47]  TIMOTHY A. DAVISyTechnical,et al.  Computing the Sparse Inverse Subset: an Inverse Multifrontal Approach , 1995 .

[48]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[49]  พงศ์ศักดิ์ บินสมประสงค์,et al.  FORMATION OF A SPARSE BUS IMPEDANCE MATRIX AND ITS APPLICATION TO SHORT CIRCUIT STUDY , 1980 .