MID-IR SPECTRA OF TYPE Ia SN 2014J IN M82 SPANNING THE FIRST 4 MONTHS

We present a time series of 8–13 μm spectra and photometry for SN 2014J obtained 57, 81, 108, and 137 days after the explosion using CanariCam on the Gran Telescopio Canarias. This is the first mid-IR time series ever obtained for a Type Ia supernova (SN Ia). These observations can be understood within the framework of the delayed detonation model and the production of ∼0.6 M☉ of 56Ni, consistent with the observed brightness, the brightness decline relation, and the γ-ray fluxes. The [Co iii] line at 11.888 μm is particularly useful for evaluating the time evolution of the photosphere and measuring the amount of 56Ni and thus the mass of the ejecta. Late-time line profiles of SN 2014J are rather symmetric and not shifted in the rest frame. We see argon emission, which provides a unique probe of mixing in the transition layer between incomplete burning and nuclear statistical equilibrium. We may see [Fe iii] and [Ni iv] emission, both of which are observed to be substantially stronger than indicated by our models. If the latter identification is correct, then we are likely observing stable Ni, which might imply central mixing. In addition, electron capture, also required for stable Ni, requires densities larger than ∼1 × 109 g cm−3, which are expected to be present only in white dwarfs close to the Chandrasekhar limit. This study demonstrates that mid-IR studies of SNe Ia are feasible from the ground and provide unique information, but it also indicates the need for better atomic data.

[1]  P. Hoeflich,et al.  THERMONUCLEAR SUPERNOVAE: PROBING MAGNETIC FIELDS BY POSITRONS AND LATE-TIME IR LINE PROFILES , 2014, 1409.2159.

[2]  J. Wisniewski,et al.  NEAR-INFRARED LINE IDENTIFICATION IN TYPE Ia SUPERNOVAE DURING THE TRANSITIONAL PHASE , 2014, 1407.7732.

[3]  W. Hillebrandt,et al.  Extensive HST ultraviolet spectra and multiwavelength observations of SN 2014J in M82 indicate reddening and circumstellar scattering by typical dust , 2014, 1405.3677.

[4]  F. Lebrun,et al.  Early gamma--ray emission from SN2014J during the optical maximum as obtained by INTEGRAL , 2014 .

[5]  S. B. Cenko,et al.  THE RISE OF SN 2014J IN THE NEARBY GALAXY M82 , 2014 .

[6]  C. Packham,et al.  Mid-IR Spectrum of Supernova SN 2014J in M82 , 2014 .

[7]  E. Ofek,et al.  The rise of SN2014J in the nearby galaxy M82 , 2014, 1402.0849.

[8]  C. Packham,et al.  Mid-IR Detection of Supernova SN 2014J in M82 , 2014 .

[9]  Wei Zheng,et al.  ESTIMATING THE FIRST-LIGHT TIME OF THE TYPE IA SUPERNOVA 2014J IN M82 , 2014, 1401.7968.

[10]  S. E. Persson,et al.  TYPE Iax SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION , 2012, 1212.2209.

[11]  J. Maund,et al.  VLT Spectropolarimetry of the Type Ia SN 2005ke A step towards understanding subluminous events , 2012, 1206.1858.

[12]  M. Kilic,et al.  THE ABSENCE OF EX-COMPANIONS IN TYPE Ia SUPERNOVA REMNANTS , 2012, 1205.3168.

[13]  Bo Wang,et al.  The Progenitors of Type Ia Supernovae , 2012, 1204.1155.

[14]  Eitan Grinspun,et al.  A discrete geometric approach for simulating the dynamics of thin viscous threads , 2012, J. Comput. Phys..

[15]  Lars Bildsten,et al.  THE LONG-TERM EVOLUTION OF DOUBLE WHITE DWARF MERGERS , 2011, 1108.4036.

[16]  I. Sakon,et al.  Diffraction-Limited Subaru Imaging of M 82: Sharp Mid-Infrared View of the Starburst Core* , 2011, 1101.4942.

[17]  J. Sollerman,et al.  Effects of the explosion asymmetry and viewing angle on the Type Ia supernova colour and luminosity calibration , 2011, 1101.3935.

[18]  M. Phillips,et al.  NEAR-ULTRAVIOLET PROPERTIES OF A LARGE SAMPLE OF TYPE Ia SUPERNOVAE AS OBSERVED WITH THE Swift UVOT , 2010, 1007.5279.

[19]  D. Berk,et al.  THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET , 2010, 1007.4842.

[20]  Ryan M. Ferguson,et al.  THE JINA REACLIB DATABASE: ITS RECENT UPDATES AND IMPACT ON TYPE-I X-RAY BURSTS , 2010, The Astrophysical Journal Supplement Series.

[21]  L. Wang,et al.  SECONDARY PARAMETERS OF TYPE Ia SUPERNOVA LIGHT CURVES , 2009, 0912.2231.

[22]  P. Höflich Multi-dimensional Radiation Transport in Rapidly Expanding Envelopes , 2009 .

[23]  E. Baron,et al.  On the hydrogen recombination time in Type II supernova atmospheres , 2009, 0910.0552.

[24]  J. Wheeler,et al.  SN 2005hj: Evidence for Two Classes of Normal-Bright SNe Ia and Implications for Cosmology , 2007, 0705.4467.

[25]  R. Kotak,et al.  Signatures of Delayed Detonation, Asymmetry, and Electron Capture in the Mid-Infrared Spectra of Supernovae 2003hv and 2005df , 2007, astro-ph/0702117.

[26]  P. Höflich Physics of type Ia supernovae , 2006 .

[27]  E. L. Robinson,et al.  Low Carbon Abundance in Type Ia Supernovae , 2006, astro-ph/0601614.

[28]  K. Nomoto,et al.  Signature of Electron Capture in Iron-rich Ejecta of SN 2003du , 2004, astro-ph/0409185.

[29]  Robert K. Pina,et al.  CanariCam: a multimode mid-infrared camera for the Gran Telescopio CANARIAS , 2003, SPIE Astronomical Telescopes + Instrumentation.

[30]  S. Sakai,et al.  Infrared Spectra of the Subluminous Type Ia Supernova SN 1999by , 2001, astro-ph/0112126.

[31]  P. Hoeflich,et al.  Gamma-rays as probes for the multi-dimensionality of type Ia supernovae , 2001, astro-ph/0110098.

[32]  D. Howell,et al.  Evidence for Asphericity in a Subluminous Type Ia Supernova: Spectropolarimetry of SN 1999by , 2001, astro-ph/0101520.

[33]  K. Nomoto,et al.  The Role of Electron Captures in Chandrasekhar-Mass Models for Type Ia Supernovae , 2000, astro-ph/0001464.

[34]  Mark R. Kidger,et al.  Spectral Irradiance Calibration in the Infrared. X. A Self-Consistent Radiometric All-Sky Network of Absolutely Calibrated Stellar Spectra , 1999 .

[35]  K. Nomoto,et al.  Inward Propagation of Nuclear-burning Shells in Merging C-O and He White Dwarfs , 1998, astro-ph/9801084.

[36]  P. Hoeflich Models for Type Ia supernovae and cosmology , 1997, astro-ph/9709031.

[37]  P. Hoeflich,et al.  Explosion Models for Type IA Supernovae: A Comparison with Observed Light Curves, Distances, H 0, and Q 0 , 1996, astro-ph/9602025.

[38]  David Branch,et al.  IN SEARCH OF THE PROGENITORS OF TYPE IA SUPERNOVAE , 1995 .

[39]  P. Hoeflich,et al.  Analysis of the Type IA Supernova SN 1994D , 1995, astro-ph/9602005.

[40]  P. Hoeflich,et al.  Gamma-Ray Light Curves and Spectra of Models for Type-Ia Supernovae , 1994 .

[41]  S. Woosley,et al.  Sub-Chandrasekhar mass models for Type IA supernovae , 1994 .

[42]  D. Gezari,et al.  High-resolution 12.4 micron images of the starburst region in M82 , 1992 .

[43]  Toshikazu Shigeyama,et al.  Late Detonation Models for the Type IA Supernovae SN 1991T and SN 1990N , 1992 .

[44]  D. Mihalas,et al.  Foundations of Radiation Hydrodynamics , 1985 .

[45]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[46]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[47]  William A. Fowler,et al.  Nucleosynthesis in Supernovae. , 1960 .

[48]  C. Lawrence,et al.  AAS/High Energy Astrophysics Division , 2013 .

[49]  S. Roca-F brega,et al.  Revista Mexicana de Astronomia y Astrofisica Conference Series , 2011 .

[50]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[51]  Danielle Alloin,et al.  Stellar candles for the extragalactic distance scale , 2003 .

[52]  Bruno Leibundgut,et al.  From twilight to highlight : the physics of supernovae : proceedings of the ESO/MPA/MPE workshop held at Garching, Germany, 29-31 July 2002 , 2002 .

[53]  William H. Press,et al.  Dynamic mass exchange in doubly degenerate binaries I , 1990 .

[54]  R. E. Casten,et al.  Nuclear Physics , 1935, Nature.

[55]  October I Physical Review Letters , 2022 .