High thermoelectric performance in n-type BiAgSeS due to intrinsically low thermal conductivity

BiAgSeS shows intrinsically low thermal conductivity in the temperature range from 300 K (∼0.46 W m−1 K−1) to 823 K (∼0.29 W m−1 K−1). Low thermal conductivity coupling with enhanced electrical transport properties achieved through partially substituting S2− by Cl− leads to a high ZT of ∼1.0 at 823 K for BiAgSeS0.97Cl0.03, indicating that the BiAgSeS system is promising for thermoelectric power generation applications.

[1]  V. Ozoliņš,et al.  Lone pair electrons minimize lattice thermal conductivity , 2013 .

[2]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[3]  Vinayak P. Dravid,et al.  Strong Phonon Scattering by Layer Structured PbSnS2 in PbTe Based Thermoelectric Materials , 2012, Advanced materials.

[4]  C. Barreteau,et al.  A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides , 2012 .

[5]  G. J. Snyder,et al.  Copper ion liquid-like thermoelectrics. , 2012, Nature materials.

[6]  Kun Li,et al.  Solid-solutioned homojunction nanoplates with disordered lattice: a promising approach toward "phonon glass electron crystal" thermoelectric materials. , 2012, Journal of the American Chemical Society.

[7]  M. Kanatzidis,et al.  Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. , 2012, Journal of the American Chemical Society.

[8]  Yuanhua Lin,et al.  Polycrystalline BiCuSeO oxide as a potential thermoelectric material , 2012 .

[9]  M. Kanatzidis,et al.  High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. , 2011, Journal of the American Chemical Society.

[10]  C. Uher,et al.  Thermoelectric Properties and Investigations of Low Thermal Conductivity in Ga-doped Cu2GeSe3 , 2011 .

[11]  S. Yamanaka,et al.  Thermoelectric properties of Ag1−xGaTe2 with chalcopyrite structure , 2011 .

[12]  D. Morelli,et al.  High thermoelectric figure of merit in the Cu3SbSe4-Cu3SbS4 solid solution , 2011 .

[13]  S. Yamanaka,et al.  High-temperature thermoelectric properties of Cu2Ga4Te7 with defect zinc-blende structure , 2011 .

[14]  B. Lenoir,et al.  Promising thermoelectric properties in AgxMo9Se11 compounds (3.4 ≤ x ≤ 3.9) , 2011 .

[15]  A. Maignan,et al.  Order–Disorder Transition in AgCrSe2: a New Route to Efficient Thermoelectrics , 2011 .

[16]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[17]  Weishu Liu,et al.  High-performance nanostructured thermoelectric materials , 2010 .

[18]  Jingjing Xu,et al.  Enhanced Figure-of-Merit in Se-Doped p-Type AgSbTe2 Thermoelectric Compound , 2010 .

[19]  D. Bérardan,et al.  Bi1−xSrxCuSeO oxyselenides as promising thermoelectric materials , 2010 .

[20]  D. Morelli,et al.  Structural effects on the lattice thermal conductivity of ternary antimony- and bismuth-containing chalcogenide semiconductors , 2010 .

[21]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[22]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[23]  Fuqiang Huang,et al.  Improved Thermoelectric Properties of Cu‐Doped Quaternary Chalcogenides of Cu2CdSnSe4 , 2009 .

[24]  Jingfeng Li,et al.  Effect of mixed grain sizes on thermoelectric performance of Bi2Te3 compound , 2009 .

[25]  Heng Wang,et al.  Synthesis and transport property of AgSbTe2 as a promising thermoelectric compound , 2008 .

[26]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[27]  D. Morelli,et al.  Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. , 2008, Physical review letters.

[28]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[29]  E. Toberer,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[30]  H. Ohta,et al.  Thermoelectric phase diagram in a CaTiO3–SrTiO3–BaTiO3 system , 2007 .

[31]  A. Walsh,et al.  Electronic origins of structural distortions in post-transition metal oxides: experimental and theoretical evidence for a revision of the lone pair model. , 2006, Physical review letters.

[32]  Dmitri O. Klenov,et al.  Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. , 2006, Physical review letters.

[33]  S. Yamanaka,et al.  Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity , 2005 .

[34]  Donald T. Morelli,et al.  Thermopower enhancement in lead telluride nanostructures , 2004 .

[35]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[36]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[37]  J. Teubner,et al.  High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity. , 2001, Physical review letters.

[38]  Uher,et al.  CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications , 2000, Science.

[39]  A. Glatz,et al.  X-ray and neutron diffraction studies of the high-temperature β-phase of the AgBiSe2/AgBiS2 system , 1968 .

[40]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[41]  Gang Chen,et al.  Recent advances in thermoelectric nanocomposites , 2012 .