Artificial intelligence-based diagnosis of upper gastrointestinal subepithelial lesions on endoscopic ultrasonography images

[1]  Quoc V. Le,et al.  EfficientNetV2: Smaller Models and Faster Training , 2021, ICML.

[2]  D. Kim,et al.  Application of A Convolutional Neural Network in The Diagnosis of Gastric Mesenchymal Tumors on Endoscopic Ultrasonography Images , 2020, Journal of clinical medicine.

[3]  M. Caricato,et al.  What About Gastric Schwannoma? A Review Article , 2020, Journal of Gastrointestinal Cancer.

[4]  K. Ando,et al.  Efficacy of endoscopic ultrasound with artificial intelligence for the diagnosis of gastrointestinal stromal tumors , 2020, Journal of Gastroenterology.

[5]  Linda S. Lee,et al.  EUS-guided fine-needle biopsy versus fine-needle aspiration in the diagnosis of subepithelial lesions: a large multicenter study. , 2020, Gastrointestinal endoscopy.

[6]  T. Chinen,et al.  Superiority of mucosal incision-assisted biopsy over ultrasound-guided fine needle aspiration biopsy in diagnosing small gastric subepithelial lesions: a propensity score matching analysis , 2019, BMC gastroenterology.

[7]  Taghi M. Khoshgoftaar,et al.  A survey on Image Data Augmentation for Deep Learning , 2019, Journal of Big Data.

[8]  Takamichi Kuwahara,et al.  Usefulness of Deep Learning Analysis for the Diagnosis of Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas , 2019, Clinical and translational gastroenterology.

[9]  Ukihide Tateishi,et al.  Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network , 2019, Japanese Journal of Radiology.

[10]  Robin L. Jones,et al.  Gastrointestinal stromal tumours: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. , 2018, Annals of oncology : official journal of the European Society for Medical Oncology.

[11]  R. Grützmann,et al.  Gastrointestinal schwannomas: a rare but important differential diagnosis of mesenchymal tumors of gastrointestinal tract , 2018, BMC Surgery.

[12]  T. Koga,et al.  Current clinical management of gastrointestinal stromal tumor , 2018, World journal of gastroenterology.

[13]  M. Fujishiro,et al.  Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images , 2018, Gastric Cancer.

[14]  E. Finkelstein,et al.  Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes , 2017, JAMA.

[15]  Nicolas Chapados,et al.  Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model , 2017, Gut.

[16]  Amy Wang,et al.  The role of endoscopy in subepithelial lesions of the GI tract. , 2017, Gastrointestinal endoscopy.

[17]  S. Kim,et al.  Endoscopic ultrasound without tissue acquisition has poor accuracy for diagnosing gastric subepithelial tumors , 2016, Medicine.

[18]  Seiichi Hirota,et al.  The standard diagnosis, treatment, and follow-up of gastrointestinal stromal tumors based on guidelines , 2015, Gastric Cancer.

[19]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[20]  Eun Hye Kim,et al.  Impact of Periodic Endoscopy on Incidentally Diagnosed Gastric Gastrointestinal Stromal Tumors: Findings in Surgically Resected and Confirmed Lesions , 2015, Annals of Surgical Oncology.

[21]  T. Koga,et al.  Clinical usefulness of endoscopic ultrasound-guided fine needle aspiration for gastric subepithelial lesions smaller than 2 cm. , 2014, Journal of gastrointestinal and liver diseases : JGLD.

[22]  Aaron C. Courville,et al.  Generative adversarial networks , 2014, Commun. ACM.

[23]  L. Larocca,et al.  Fine-needle tissue acquisition from subepithelial lesions using a forward-viewing linear echoendoscope , 2013, Endoscopy.

[24]  Heikki Joensuu,et al.  Gastrointestinal stromal tumour , 2013, The Lancet.

[25]  R. Takayanagi,et al.  Mucosal-incision assisted biopsy for suspected gastric gastrointestinal stromal tumors. , 2013, World journal of gastrointestinal endoscopy.

[26]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[27]  L. Voltaggio,et al.  Gastric schwannoma: a clinicopathologic study of 51 cases and critical review of the literature. , 2012, Human pathology.

[28]  W. Brugge,et al.  Accuracy of EUS in the evaluation of small gastric subepithelial lesions. , 2010, Gastrointestinal endoscopy.

[29]  D. Park,et al.  Is it possible to differentiate gastric GISTs from gastric leiomyomas by EUS? , 2009, World journal of gastroenterology.

[30]  M. Kimmey,et al.  A prospective study comparing endoscopy and EUS in the evaluation of GI subepithelial masses. , 2005, Gastrointestinal endoscopy.

[31]  S. Hirota,et al.  Biological and clinical review of stromal tumors in the gastrointestinal tract. , 2000, Histology and histopathology.

[32]  J. Hedenbro,et al.  Endoscopic diagnosis of submucosal gastric lesions , 1991, Surgical Endoscopy.

[33]  M. Enjoji,et al.  Benign schwannoma of the gastrointestinal tract: a clinicopathologic and immunohistochemical study. , 1988, Human pathology.

[34]  M. Fujishiro,et al.  Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. , 2019, Gastrointestinal endoscopy.

[35]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[36]  Dong-Hyun Lee,et al.  Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks , 2013 .

[37]  M. Catalano,et al.  Interobserver agreement for EUS in the evaluation and diagnosis of submucosal masses. , 2001, Gastrointestinal endoscopy.