Volatile flavor analysis and sensory evaluation of custard desserts varying in type and concentration of carboxymethyl cellulose.

The influence of type and concentration of carboxymethyl cellulose (CMC) on flavor and textural properties of custard desserts was examined. A synthetic strawberry flavor mixture was used to flavor the custards; it comprised 15 volatile flavor compounds. The viscosity of the custards was determined using rheometric measurements. Static headspace gas chromatography and in-nose proton transfer reaction-mass spectrometry analyses were conducted to determine the custards' volatile flavor properties. Perceived odor, flavor, and textural properties were assessed in sensory analysis experiments using magnitude estimation against a fixed modulus. Both type and concentration of CMC altered the viscosity of the custards. Softer custards had higher static headspace flavor concentrations. On the contrary, firmer custards demonstrated higher in-nose flavor concentrations. In sensory analysis, firmer custards showed higher thickness and lower sweetness intensities than their low-viscosity counterparts. The thickness perception corresponded to the viscosity of the custards. Removal of sucrose from the custards affected sweetness intensity only and not the intensity of other attributes. Therefore, the influence of the viscosity of the custards on the release of sweet-tasting components is held responsible for the effect on perceived sweetness intensity. Odor intensities were generally higher for the low-viscosity custard, whereas fruity flavor intensities were higher for the firmer custards. Odor intensities correlated with static headspace concentrations and flavor intensities related reasonably well with in-nose concentrations. Opening and closing of the nasal cavity is regarded as an important factor determining the discrepancy between static and in-nose measurements.