A review of robust clustering methods
暂无分享,去创建一个
Luis Angel García-Escudero | A. Gordaliza | Carlos Matrán | Agustín Mayo-Iscar | C. Matrán | A. Gordaliza | L. García-Escudero | A. Mayo-Íscar | A. Mayo‐Iscar
[1] Frank Critchley,et al. RelaxMCD: Smooth optimisation for the Minimum Covariance Determinant estimator , 2010, Comput. Stat. Data Anal..
[2] J. A. Cuesta-Albertos,et al. On the Asymptotics of Trimmed Best k-Nets☆ , 2002 .
[3] David M. Rocke,et al. Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator , 2004, Comput. Stat. Data Anal..
[4] Christian Hennig,et al. Clusters, outliers, and regression: fixed point clusters , 2003 .
[5] P. Rousseeuw. Multivariate estimation with high breakdown point , 1985 .
[6] Adrian E. Raftery,et al. How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis , 1998, Comput. J..
[7] M. Markatou. Mixture Models, Robustness, and the Weighted Likelihood Methodology , 2000, Biometrics.
[8] Carla M. Santos-Pereira,et al. Detection of Outliers in Multivariate Data: A Method Based on Clustering and Robust Estimators , 2002, COMPSTAT.
[9] M. Gallegos,et al. Trimming algorithms for clustering contaminated grouped data and their robustness , 2009, Adv. Data Anal. Classif..
[10] Yuanyuan Ding,et al. Robust clustering in high dimensional data using statistical depths , 2007, BMC Bioinformatics.
[11] Alfonso Gordaliza Ramos,et al. A general trimming approach to robust cluster analysis , 2007 .
[12] Luis Angel García-Escudero,et al. A Proposal for Robust Curve Clustering , 2005, J. Classif..
[13] Luis Angel García-Escudero,et al. The importance of the scales in heterogeneous robust clustering , 2007, Comput. Stat. Data Anal..
[14] A. Cuevas,et al. Cluster analysis: a further approach based on density estimation , 2001 .
[15] Brian Everitt,et al. Cluster analysis , 1974 .
[16] Martin Schader,et al. Data Analysis: Scientific Modeling And Practical Application , 2000 .
[17] Frank Plastria,et al. Non-hierarchical clustering with masloc , 1983, Pattern Recognit..
[18] R. A. Maller. A central limit theorem for multivariate generalized trimmed k-means. , 2001 .
[19] Juan Antonio Cuesta-Albertos,et al. Impartial trimmed k-means for functional data , 2007, Comput. Stat. Data Anal..
[20] A. Raftery,et al. Model-based Gaussian and non-Gaussian clustering , 1993 .
[21] C. Hennig,et al. Dissolution point and isolation robustness: Robustness criteria for general cluster analysis methods , 2008 .
[22] Gérard Govaert,et al. Gaussian parsimonious clustering models , 1995, Pattern Recognit..
[23] Shian-Shyong Tseng,et al. Two-phase clustering process for outliers detection , 2001, Pattern Recognit. Lett..
[24] Marco Riani,et al. Random Start Forward Searches with Envelopes for Detecting Clusters in Multivariate Data , 2006 .
[25] James B. Orlin,et al. Scale-invariant clustering with minimum volume ellipsoids , 2008, Comput. Oper. Res..
[26] Francesca Torti,et al. New robust dynamic plots for regression mixture detection , 2009, Adv. Data Anal. Classif..
[27] G. Sawitzki,et al. Excess Mass Estimates and Tests for Multimodality , 1991 .
[28] Vladimir Estivill-Castro,et al. Fast and Robust General Purpose Clustering Algorithms , 2000, PRICAI.
[29] C. Hennig. Breakdown points for maximum likelihood estimators of location–scale mixtures , 2004, math/0410073.
[30] David L. Woodruff,et al. Identification of Outliers in Multivariate Data , 1996 .
[31] R. Maronna,et al. Multivariate Clustering Procedures with Variable Metrics , 1974 .
[32] G. W. Milligan,et al. An examination of procedures for determining the number of clusters in a data set , 1985 .
[33] Rajesh N. Davé,et al. Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..
[34] Ricardo A. Maronna,et al. Principal Components and Orthogonal Regression Based on Robust Scales , 2005, Technometrics.
[35] Georg Ch. Pflug,et al. Mathematical statistics and applications , 1985 .
[36] Anthony C. Atkinson,et al. Exploring Multivariate Data with the Forward Search , 2004 .
[37] Laurie Davies,et al. The identification of multiple outliers , 1993 .
[38] E. Forgy,et al. Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .
[39] Peter J. Rousseeuw,et al. Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.
[40] Ali S. Hadi,et al. Finding Groups in Data: An Introduction to Chster Analysis , 1991 .
[41] Werner A. Stahel,et al. Robust Statistics: The Approach Based on Influence Functions , 1987 .
[42] Stefan Van Aelst,et al. Machine Learning and Robust Data Mining , 2007, Comput. Stat. Data Anal..
[43] Helmuth Spaeth,et al. Cluster-Analyse-Algorithmen zur Objektklassifizierung und Datenreduktion , 1975 .
[44] Hrishikesh D. Vinod Mathematica. Integer Programming and the Theory of Grouping , 1969 .
[45] David L. Woodruff,et al. Experiments with, and on, algorithms for maximum likelihood clustering , 2004, Comput. Stat. Data Anal..
[46] G. Celeux,et al. A Classification EM algorithm for clustering and two stochastic versions , 1992 .
[47] Hans-Hermann Bock,et al. PROBABILITY MODELS AND HYPOTHESES TESTING IN PARTITIONING CLUSTER ANALYSIS , 1996 .
[48] S. Ng,et al. Robust Cluster Analysis via Mixture Models , 2006 .
[49] Ruben H. Zamar,et al. Diagnosing Multivariate Outliers Detected by Robust Estimators , 2009 .
[50] H. P. Friedman,et al. On Some Invariant Criteria for Grouping Data , 1967 .
[51] A. Gordaliza. Best approximations to random variables based on trimming procedures , 1991 .
[52] María Teresa Gallegos,et al. Maximum Likelihood Clustering with Outliers , 2002 .
[53] T. Banerjee. Exploring Multivariate Data With the Forward Search , 2006 .
[54] W. Polonik. Measuring Mass Concentrations and Estimating Density Contour Clusters-An Excess Mass Approach , 1995 .
[55] Peter J. Rousseeuw,et al. Robust regression and outlier detection , 1987 .
[56] A. Gordaliza,et al. Trimmed best k-nets: A robustified version of an L∞-based clustering method , 1998 .
[57] G. De Soete,et al. Clustering and Classification , 2019, Data-Driven Science and Engineering.
[58] Luis Angel García-Escudero,et al. Generalized Radius Processes for Elliptically Contoured Distributions , 2005 .
[59] Peter J. Huber,et al. Robust Statistics , 2005, Wiley Series in Probability and Statistics.
[60] Peter J. Rousseeuw,et al. An Algorithm for Positive-Breakdown Regression Based on Concentration Steps , 2000 .
[61] Anthony C. Atkinson,et al. Exploratory tools for clustering multivariate data , 2007, Comput. Stat. Data Anal..
[62] H. Bock. Probabilistic models in cluster analysis , 1996 .
[63] Luis Angel García-Escudero,et al. Trimming Tools in Exploratory Data Analysis , 2003 .
[64] Steven M. Lalonde,et al. A First Course in Multivariate Statistics , 1997, Technometrics.
[65] Luis Angel García-Escudero,et al. Exploring the number of groups in robust model-based clustering , 2011, Stat. Comput..
[66] Xiaogang Wang,et al. Linear grouping using orthogonal regression , 2006, Comput. Stat. Data Anal..
[67] Hans-Hermann Bock,et al. Classification, Clustering, and Data Analysis: Recent Advances and Applications , 2002 .
[68] Anthony C. Atkinson,et al. Robust classification with categorical variables , 2006 .
[69] A. Raftery,et al. Nearest-Neighbor Clutter Removal for Estimating Features in Spatial Point Processes , 1998 .
[70] M. Gallegos,et al. A robust method for cluster analysis , 2005, math/0504513.
[71] P. Rousseeuw,et al. A fast algorithm for the minimum covariance determinant estimator , 1999 .
[72] Carlos Matrán,et al. Robust estimation in the normal mixture model based on robust clustering , 2008 .
[73] J. A. Cuesta-Albertos,et al. Trimmed $k$-means: an attempt to robustify quantizers , 1997 .
[74] R. Hathaway. A Constrained Formulation of Maximum-Likelihood Estimation for Normal Mixture Distributions , 1985 .
[75] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[76] S. Van Aelst,et al. Robust linear clustering , 2009 .
[77] A. Gordaliza,et al. Robustness Properties of k Means and Trimmed k Means , 1999 .
[78] André Hardy,et al. An examination of procedures for determining the number of clusters in a data set , 1994 .
[79] Peter Filzmoser,et al. Robust fitting of mixtures using the trimmed likelihood estimator , 2007, Comput. Stat. Data Anal..
[80] Peter G. Bryant,et al. Large-sample results for optimization-based clustering methods , 1991 .
[81] David L. Woodruff,et al. Computational Connections between Robust Multivariate Analysis and Clustering , 2002, COMPSTAT.
[82] A. Raftery,et al. Detecting features in spatial point processes with clutter via model-based clustering , 1998 .
[83] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.