On-line maintenance of triconnected components with SPQR-trees
暂无分享,去创建一个
[1] Robert E. Tarjan,et al. Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..
[2] Jan van Leeuwen,et al. Worst-case Analysis of Set Union Algorithms , 1984, JACM.
[3] W. T. Tutte. Graph Theory , 1984 .
[4] Robert E. Tarjan,et al. A Linear-Time Algorithm for a Special Case of Disjoint Set Union , 1985, J. Comput. Syst. Sci..
[5] R. Tarjan. Amortized Computational Complexity , 1985 .
[6] J. Sheehan. GRAPH THEORY (Encyclopedia of Mathematics and Its Applications, 21) , 1986 .
[7] V. Ramachandran,et al. A Characterization of Separating Pairs and Triplets in a Graph. , 1987 .
[8] Takao Asano,et al. Dynamic Orthogonal Segment Intersection Search , 1987, J. Algorithms.
[9] Roberto Tamassia,et al. A Dynamic Data Structure for Planar Graph Embedding (Extended Abstract) , 1988, ICALP.
[10] Roberto Tamassia,et al. Incremental planarity testing , 1989, 30th Annual Symposium on Foundations of Computer Science.
[11] Han La Poutré. Maintenance of Triconnected Components of Graphs (Extended Abstract) , 1992, ICALP.
[12] Donald S. Fussell,et al. Finding Triconnected Components by Local Replacement , 1993, SIAM J. Comput..
[13] Roberto Tamassia,et al. On-Line Planarity Testing , 1989, SIAM J. Comput..
[14] Roberto Tamassia. On-Line Planar Graph Embedding , 1996, J. Algorithms.
[15] Robert E. Tarjan,et al. Maintaining bridge-connected and biconnected components on-line , 1992, Algorithmica.