Facial Expression Recognition using KCCA with Combining Correlation Kernels and Kansei Information

Kernel canonical correlation analysis (kCCA) with combining correlation kernels of multiple-orders and Kansei information is applied to facial expression recognition. Any explicit feature extraction is done and spatial correlation features of image data are implicitly incorporated in the correlation kernels. Further, Kansei information is included as the second feature in kCCA. Classification experiments with JAFFE database show that, although the use of Kansei information in itself gives lower classification performance than class indicators optimal for classification tasks, combining Kansei information with them makes the classification performance higher than the only use of the indicators.

[1]  Nobuyuki Otsu,et al.  Facial expression recognition using Fisher weight maps , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[2]  Shotaro Akaho,et al.  A kernel method for canonical correlation analysis , 2006, ArXiv.

[3]  John Shawe-Taylor,et al.  Canonical Correlation Analysis: An Overview with Application to Learning Methods , 2004, Neural Computation.

[4]  O. Baysal,et al.  Multigrid and Upwind Viscous Flow Solver on Three-Dimensional Overlapped and Embedded Grids , 1991 .

[5]  Pedro E. López-de-Teruel,et al.  Nonlinear kernel-based statistical pattern analysis , 2001, IEEE Trans. Neural Networks.

[6]  Malte Kuss,et al.  The Geometry Of Kernel Canonical Correlation Analysis , 2003 .

[7]  Toshikazu Kato,et al.  Learning of personal visual impression for image database systems , 1993, Proceedings of 2nd International Conference on Document Analysis and Recognition (ICDAR '93).

[8]  Beat Fasel,et al.  Automati Fa ial Expression Analysis: A Survey , 1999 .

[9]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[11]  Horst Bischof,et al.  Appearance models based on kernel canonical correlation analysis , 2003, Pattern Recognit..

[12]  W. Henshaw,et al.  Composite overlapping meshes for the solution of partial differential equations , 1990 .

[13]  A. Jameson Solution of the Euler equations for two dimensional transonic flow by a multigrid method , 1983 .

[14]  Yo Horikawa,et al.  Use of Autocorrelation Kernels in Kernel Canonical Correlation Analysis for Texture Classification , 2004, ICONIP.

[15]  Yo Horikawa,et al.  Comparison of Combining Methods of Correlation Kernels in kPCA and kCCA for Texture Classification with Kansei Information , 2007, SCIA.

[16]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[17]  Colin Fyfe,et al.  Kernel and Nonlinear Canonical Correlation Analysis , 2000, IJCNN.

[18]  Michael J. Lyons,et al.  Automatic Classification of Single Facial Images , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Y. Horikawa,et al.  Modification of correlation kernels in SVM, KPCA and KCCA in texture classification , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[20]  Maja Pantic,et al.  Automatic Analysis of Facial Expressions: The State of the Art , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003 .

[22]  John A. McLaughlin,et al.  Nth-Order Autocorrelations in Pattern Recognition , 1968, Inf. Control..

[23]  Jean-Philippe Thiran,et al.  Pattern recognition using higher-order local autocorrelation coefficients , 2004, Pattern Recognit. Lett..

[24]  Yoonsik Kim,et al.  Prediction of damping coefficients using the unsteady Euler equations , 2003 .

[25]  Matti Pietikäinen,et al.  A Coarse-to-Fine Classification Scheme for Facial Expression Recognition , 2004, ICIAR.

[26]  Shu Liao,et al.  Facial Expression Recognition using Advanced Local Binary Patterns, Tsallis Entropies and Global Appearance Features , 2006, 2006 International Conference on Image Processing.

[27]  Jean-Philippe Thiran,et al.  Higher order autocorrelations for pattern classification , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[28]  Kum Won Cho,et al.  Development of a fully systemized chimera methodology for steady/unsteady problems , 1999 .

[29]  W. Zheng,et al.  Facial expression recognition using kernel canonical correlation analysis (KCCA) , 2006, IEEE Transactions on Neural Networks.

[30]  Yo Horikawa Comparison of support vector machines with autocorrelation kernels for invariant texture classification , 2004, ICPR 2004.