Computationally efficient two-dimensional Capon spectrum analysis

We present a computationally efficient algorithm for computing the 2-D Capon (1969) spectral estimator. The implementation is based on the fact that the 2-D data covariance matrix will have a Toeplitz-block-Toeplitz structure, with the result that the inverse covariance matrix can be expressed in closed form by using a special case of the Gohberg-Heinig (1974) formula that is a function of strictly the forward 2-D prediction matrix polynomials. Furthermore, we present a novel method, based on a 2-D lattice algorithm, to compute the needed forward prediction matrix polynomials and discuss the difference in the so-obtained 2-D spectral estimate as compared with the one obtained by using the prediction matrix polynomials given by the Whittle-Wiggins-Robinson (1963, 1965) algorithm. Numerical simulations illustrate the improved resolution as well as the clear computational gain in comparison to both the well-known classical implementation and the method published by Liu et al.(see IEEE Trans. Aerosp. Electron. Syst., vol.34, p.1314-19, 1998).

[1]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[2]  D. Manolakis,et al.  Fast algorithms for block toeplitz matrices with toeplitz entries , 1984 .

[3]  P. Whittle On the fitting of multivariate autoregressions, and the approximate canonical factorization of a spectral density matrix , 1963 .

[4]  Bede Liu,et al.  An efficient algorithm for two-dimensional autoregressive spectrum estimation , 1989, IEEE Trans. Acoust. Speech Signal Process..

[5]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[6]  Etienne Barnard,et al.  On the asymmetry in the PSD for 2-D linear prediction , 1997, Signal Process..

[7]  Jian Li,et al.  Efficient implementation of Capon and APES for spectral estimation , 1998 .

[8]  E. Robinson,et al.  Recursive solution to the multichannel filtering problem , 1965 .

[9]  Steven Thomas Smith,et al.  Structured covariance estimation for space-time adaptive processing , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[10]  Philip N. Borer,et al.  Application of the maximum likelihood method to a large 2D NMR spectrum using a parallel computer , 1989 .

[11]  L. Ljung,et al.  New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices , 1979 .

[12]  T. Ulrich,et al.  Maximum entropy spectral analy-sis and autoregressive decomposition , 1975 .

[13]  Jian Li,et al.  Using APES for interferometric SAR imaging , 1996, Defense, Security, and Sensing.

[14]  O. Strand Multichannel complex maximum entropy (autoregressive) spectral analysis , 1977 .

[15]  Leland B. Jackson,et al.  Frequency and bearing estimation by two-dimensional linear prediction , 1979, ICASSP.

[16]  R. Klemm,et al.  Conference Report: Eusar '96 Current Trends In SAR Technology , 1997, IEEE Aerospace and Electronic Systems Magazine.

[17]  Charles V. Jakowatz,et al.  Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach , 1996 .

[18]  Petre Stoica,et al.  Introduction to spectral analysis , 1997 .

[19]  S. D. Stearns,et al.  Digital Signal Analysis , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[20]  Stuart R. DeGraaf,et al.  SAR imaging via modern 2-D spectral estimation methods , 1998, IEEE Trans. Image Process..

[21]  H. Akaike Block Toeplitz Matrix Inversion , 1973 .

[22]  H. Kimura,et al.  A hybrid approach to high resolution two-dimensional spectrum analysis , 1987, IEEE Trans. Acoust. Speech Signal Process..

[23]  Inder J. Gupta,et al.  High-resolution radar imaging using 2-D linear prediction , 1994 .

[24]  Rangaraj M. Rangayyan,et al.  An algorithm for direct computation of 2-D linear prediction coefficients , 1993, IEEE Trans. Signal Process..

[25]  J. Capon Maximum-likelihood spectral estimation , 1979 .

[26]  B. Porat,et al.  Digital Spectral Analysis with Applications. , 1988 .

[27]  Andreas Jakobsson,et al.  Matched-filter bank interpretation of some spectral estimators , 1998, Signal Process..

[28]  Petre Stoica,et al.  Capon estimation of covariance sequences , 1998 .

[29]  T. Kailath,et al.  Efficient inversion of Toeplitz-block Toeplitz matrix , 1983 .

[30]  Dan E. Dudgeon,et al.  Multidimensional Digital Signal Processing , 1983 .

[31]  J.H. McClellan,et al.  Multidimensional spectral estimation , 1982, Proceedings of the IEEE.

[32]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[33]  Charles W. Therrien,et al.  A direct algorithm for computing 2-D AR power spectrum estimates , 1989, IEEE Trans. Acoust. Speech Signal Process..

[34]  Bruce R. Musicus Fast MLM power spectrum estimation from uniformly spaced correlations , 1985, IEEE Trans. Acoust. Speech Signal Process..

[35]  Jian Li,et al.  Performance analysis of forward-backward matched-filterbank spectral estimators , 1998, IEEE Trans. Signal Process..

[36]  Petre Stoica,et al.  Forward-only and forward-backward sample covariances - A comparative study , 1999, Signal Process..