Approximation and limit theorems for quantum stochastic models with unbounded coefficients

We prove a limit theorem for quantum stochastic differential equations with unbounded coefficients which extends the Trotter-Kato theorem for contraction semigroups. From this theorem, general results on the convergence of approximations and singular perturbations are obtained. The results are illustrated in several examples of physical interest.

[1]  W. Roeck,et al.  Extended Weak Coupling Limit for Pauli-Fierz Operators , 2006, math-ph/0610054.

[2]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[3]  Quantum stochastic operator cocycles via associated semigroups , 2005, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Kellen Petersen August Real Analysis , 2009 .

[5]  Franco Fagnola,et al.  Solving quantum stochastic differential equations with unbounded coefficients , 2003 .

[6]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[7]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[8]  Ramon van Handel,et al.  Singular Perturbation of Quantum Stochastic Differential Equations with Coupling Through an Oscillator Mode , 2007 .

[9]  John Gough Quantum Flows as Markovian Limit of Emission, Absorption and Scattering Interactions , 2003 .

[10]  C. Saavedra,et al.  Quantum flows associated to master equations in quantum optics , 1994 .

[11]  Alberto Barchielli,et al.  Continual Measurements in Quantum Mechanics and Quantum Stochastic Calculus , 2006 .

[12]  Stéphane Attal,et al.  Open Quantum Systems III: Recent Developments , 2006 .

[13]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[14]  A. S. Holevo TIME-ORDERED EXPONENTIALS IN QUANTUM STOCHASTIC CALCULUS , 1992 .

[15]  Thomas G. Kurtz,et al.  A limit theorem for perturbed operator semigroups with applications to random evolutions , 1973 .

[16]  E. Davies,et al.  One-parameter semigroups , 1980 .

[17]  Luc Bouten,et al.  Adiabatic Elimination in Quantum Stochastic Models , 2007, 0707.0686.

[18]  Franco Fagnola,et al.  On quantum stochastic differential equations with unbounded coefficients , 1990 .

[19]  Petar Todorovic,et al.  Markov Processes I , 1992 .

[20]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[21]  M. Gregoratti,et al.  The Hamiltonian Operator Associated with Some Quantum Stochastic Evolutions , 2001 .

[22]  Construction of some quantum stochastic operator cocycles by the semigroup method , 2006, math/0606545.

[23]  Luigi Accardi,et al.  The weak coupling limit as a quantum functional central limit , 1990 .

[24]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .