Realizability: a machine for Analysis and Set Theory
暂无分享,去创建一个
[1] Paulo Oliva,et al. MODIFIED BAR RECURSION AND CLASSICAL DEPENDENT CHOICE , 2004 .
[2] Jean-Louis Krivine,et al. Typed lambda-calculus in classical Zermelo-Frænkel set theory , 2001, Arch. Math. Log..
[3] M. Artin,et al. Société Mathématique de France , 1994 .
[4] Timothy G. Griffin,et al. A formulae-as-type notion of control , 1989, POPL '90.
[5] Thierry Coquand,et al. A semantics of evidence for classical arithmetic , 1995, Journal of Symbolic Logic.
[6] Jean Goubault-Larrecq,et al. Well-Founded Recursive Relations , 2001, CSL.
[7] Thierry Coquand,et al. On the computational content of the axiom of choice , 1994, The Journal of Symbolic Logic.