Infrared emitters and photodetectors with InAsSb bulk active regions

Bulk unrelaxed InAsSb alloys with Sb compositions up to 44 % and layer thicknesses up to 3 µm were grown by molecular beam epitaxy. The alloys showed photoluminescence (PL) energies as low as 0.12 eV at T = 13 K. The electroluminescence and quantum efficiency data demonstrated with unoptimized barrier heterostructures at T= 80 and 150 K suggested large absorption and carrier lifetimes sufficient for the development of long wave infrared detectors and emitters with high quantum efficiency. The minority hole transport was found to be adequate for development of the detectors and emitters with large active layer thickness.

[1]  Dawson,et al.  Ordering-induced band-gap reduction in InAs1-xSbx (x , 1992, Physical review. B, Condensed matter.

[2]  A. Y. Cho,et al.  Photoconductance measurements on InAs0.22Sb0.78/GaAs grown using molecular beam epitaxy , 1988 .

[3]  Hongen Shen,et al.  Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence , 2010 .

[4]  S. P. Watkins,et al.  Strain balanced InAs/InAsSb superlattice structures with optical emission to 10 μm , 2009 .

[5]  E. Yu,et al.  Microstructural properties of InAs/InAsxSb1-x superlattices and InASxSb1-x ordered alloys grown by modulated molecular beam epitaxy , 1997 .

[6]  L. Dawson Summary Abstract: Molecular beam epitaxial growth of InAsSb alloys and superlattices , 1986 .

[7]  G. C. Osbourn,et al.  InAsSb strained‐layer superlattices for long wavelength detector applications , 1984 .

[8]  K. Cheng,et al.  High quality InAsSb grown on InP substrates using AlSb∕AlAsSb buffer layers , 2008 .

[9]  A. Krier,et al.  Photoluminescence and bowing parameters of InAsSb∕InAs multiple quantum wells grown by molecular beam epitaxy , 2006 .

[10]  Hui Li,et al.  Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices , 2012 .

[11]  K. Wecht,et al.  Long wavelength (3–5 and 8–12 μm) photoluminescence of InAs1−xSbx grown on (100) GaAs by molecular‐beam epitaxy , 1988 .

[12]  T. F. Boggess,et al.  Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice , 2012 .

[13]  Leon Shterengas,et al.  Band gap of InAs 1 − x Sb x with native lattice constant , 2012 .

[14]  G. Wicks,et al.  nBn detector, an infrared detector with reduced dark current and higher operating temperature , 2006 .

[15]  G. Belenky,et al.  High-Power 2.2-$\mu$m Diode Lasers With Metamorphic Arsenic-Free Heterostructures , 2011, IEEE Photonics Technology Letters.

[16]  Philip Klipstein,et al.  "XBn" barrier photodetectors for high sensitivity and high operating temperature infrared sensors , 2008, SPIE Defense + Commercial Sensing.

[17]  Metamorphic InAsSb/AlInAsSb heterostructures for optoelectronic applications , 2013 .

[18]  Leon Shterengas,et al.  Unrelaxed bulk InAsSb with novel absorption, carrier transport, and recombination properties for MWIR and LWIR photodetectors , 2012, Defense + Commercial Sensing.

[19]  Amy W. K. Liu,et al.  Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb , 2011 .

[20]  G. Belenky,et al.  Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization , 2011 .

[21]  Gregory Belenky,et al.  Minority carrier lifetime in type-2 InAs–GaSb strained-layer superlattices and bulk HgCdTe materials , 2010 .

[22]  G. Belenky,et al.  Properties of unrelaxed InAs1−XSbX alloys grown on compositionally graded buffers , 2011 .

[23]  R. Nieminen,et al.  Native defects and self-diffusion in GaSb , 2002 .

[24]  S. Bedair,et al.  Growth of InAs1−xSbx (0, 1985 .

[25]  L. R. Dawson,et al.  Extended infrared response of InAsSb strained‐layer superlattices , 1988 .

[26]  Gerald B. Stringfellow,et al.  Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy , 1990 .

[27]  P. Bhattacharya,et al.  Transport properties of InAsxSb1−x (0≤x≤0.55) on InP grown by molecular‐beam epitaxy , 1990 .

[28]  Elena Plis,et al.  Lateral diffusion of minority carriers in InAsSb-based nBn detectors , 2010 .

[29]  Kwong-Kit Choi,et al.  Molecular beam epitaxial growth and optical properties of InAs1−xSbx in 8–12 μm wavelength range , 1987 .

[30]  G. B. Stringfellow,et al.  Long-range order in InAsSb , 1989 .

[31]  G. Belenky,et al.  Conduction- and Valence-Band Energies in Bulk InAs1−xSbx and Type II InAs1−xSbx/InAs Strained-Layer Superlattices , 2013, Journal of Electronic Materials.