Dynamic winding number for exploring band topology

Topological invariants play a key role in the characterization of topological states. Due to the existence of exceptional points, it is a great challenge to detect topological invariants in non-Hermitian systems. We put forward a dynamic winding number, the winding of realistic observables in long-time average, for exploring band topology in both Hermitian and non-Hermitian two-band models via a unified approach. We build a concrete relation between dynamic winding numbers and conventional topological invariants. In one-dimension, the dynamical winding number directly gives the conventional winding number. In two-dimension, the Chern number relates to the weighted sum of dynamic winding numbers of all phase singularity points. This work opens a new avenue to measure topological invariants not requesting any prior knowledge of system topology via time-averaged spin textures.

[1]  Shanhui Fan,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[2]  L. Sheng,et al.  Quantum spin-Hall effect and topologically invariant Chern numbers. , 2006, Physical review letters.

[3]  L. Duan,et al.  Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas. , 2016, Physical review letters.

[4]  Yongguan Ke,et al.  Dispersion-suppressed topological Thouless pumping , 2019, Physical Review B.

[5]  S. Fan,et al.  Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges , 2017, Conference on Lasers and Electro-Optics.

[6]  A. U. Hassan,et al.  Dynamically Encircling Exceptional Points: Exact Evolution and Polarization State Conversion. , 2017, Physical review letters.

[7]  Xian-min Jin,et al.  Direct Observation of Topology from Single-Photon Dynamics. , 2018, Physical review letters.

[8]  Stefan Nolte,et al.  Observation of a Topological Transition in the Bulk of a Non-Hermitian System. , 2015, Physical review letters.

[9]  L'aszl'o Oroszl'any,et al.  A Short Course on Topological Insulators: Band-structure topology and edge states in one and two dimensions , 2015, 1509.02295.

[10]  Shu Chen,et al.  Topological classification of non-Hermitian systems with reflection symmetry , 2018, Physical Review B.

[11]  Yoichi Ando,et al.  Topological Insulator Materials , 2013, 1304.5693.

[12]  Luyao Jiang,et al.  Topological energy transfer in an optomechanical system with exceptional points , 2016, Nature.

[13]  M. Gilbert,et al.  Topology and observables of the non-Hermitian Chern insulator , 2019, Physical Review B.

[14]  M. Bandres,et al.  Topological insulator laser: Experiments , 2018, Science.

[15]  Ce Wang,et al.  Scheme to Measure the Topological Number of a Chern Insulator from Quench Dynamics. , 2016, Physical review letters.

[16]  C. Weitenberg,et al.  Experimental reconstruction of the Berry curvature in a Floquet Bloch band , 2015, Science.

[17]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[18]  J. González,et al.  Topological protection from exceptional points in Weyl and nodal-line semimetals , 2017, 1702.02521.

[19]  M. Gilbert,et al.  Loss of Hall conductivity quantization in a non-Hermitian quantum anomalous Hall insulator , 2018, Physical Review B.

[20]  N. Kawakami,et al.  Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry , 2018, Physical Review B.

[21]  C. Hamner,et al.  Dicke-type phase transition in a spin-orbit-coupled Bose–Einstein condensate , 2014, Nature Communications.

[22]  Steven G. Johnson,et al.  Symmetry-protected topological photonic crystal in three dimensions , 2016, Nature Physics.

[23]  Shiyue Hua,et al.  Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators , 2014, Nature Photonics.

[24]  Zhong Wang,et al.  Edge States and Topological Invariants of Non-Hermitian Systems. , 2018, Physical review letters.

[25]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[26]  M. Soljačić,et al.  Observation of bulk Fermi arc and polarization half charge from paired exceptional points , 2017, Science.

[27]  C. Kane,et al.  Topological boundary modes in isostatic lattices , 2013, Nature Physics.

[28]  D. Thouless,et al.  Quantization of particle transport , 1983 .

[29]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[30]  M. Bandres,et al.  Complex Edge-State Phase Transitions in 1D Topological Laser Arrays , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[31]  Jian-Wei Pan,et al.  Highly Controllable and Robust 2D Spin-Orbit Coupling for Quantum Gases. , 2017, Physical review letters.

[32]  S. Lieu Topological phases in the non-Hermitian Su-Schrieffer-Heeger model , 2017, 1709.03788.

[33]  Zak,et al.  Berry's phase for energy bands in solids. , 1989, Physical review letters.

[34]  Dan S. Borgnia,et al.  Non-Hermitian Boundary Modes and Topology. , 2019, Physical review letters.

[35]  M. Kohmoto,et al.  Edge states and topological phases in non-Hermitian systems , 2011, 1107.2079.

[36]  K. T. Law,et al.  Realization of 2D Spin-Orbit Interaction and Exotic Topological Orders in Cold Atoms , 2013, 1304.0291.

[37]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[38]  S. Louie,et al.  Unifying Optical Selection Rules for Excitons in Two Dimensions: Band Topology and Winding Numbers. , 2018, Physical review letters.

[39]  Masahito Ueda,et al.  Symmetry and Topology in Non-Hermitian Physics , 2018, Physical Review X.

[40]  Tony E. Lee,et al.  Anomalous Edge State in a Non-Hermitian Lattice. , 2016, Physical review letters.

[41]  Hengyun Zhou,et al.  Periodic table for topological bands with non-Hermitian symmetries , 2018, Physical Review B.

[42]  W. Heiss,et al.  The physics of exceptional points , 2012, 1210.7536.

[43]  Long Zhang,et al.  Dynamical detection of topological charges , 2018, Physical Review A.

[44]  S. Murakami,et al.  Non-Bloch Band Theory of Non-Hermitian Systems. , 2019, Physical review letters.

[45]  N. Kawakami,et al.  Non-Hermitian perspective of the band structure in heavy-fermion systems , 2018, Physical Review B.

[46]  Long Zhang,et al.  Dynamical classification of topological quantum phases. , 2018, Science bulletin.

[47]  Shu Chen,et al.  Winding numbers of phase transition points for one-dimensional topological systems , 2015, 1508.01680.

[48]  M. Rudner,et al.  Topological transition in a non-Hermitian quantum walk. , 2008, Physical review letters.

[49]  Y. Hatsugai,et al.  Non-Hermitian fractional quantum Hall states , 2019, Scientific Reports.

[50]  X. Qi,et al.  Topological quantum computation based on chiral Majorana fermions , 2017, Proceedings of the National Academy of Sciences.

[51]  Enrico Santamato,et al.  Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons , 2016, Nature Communications.

[52]  Luis E. F. Foa Torres,et al.  Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points , 2017, 1711.05235.

[53]  Liang Fu,et al.  Weyl points and line nodes in gyroid photonic crystals , 2012, Nature Photonics.

[54]  Shinsei Ryu,et al.  Classification of topological quantum matter with symmetries , 2015, 1505.03535.

[55]  D. Brody Biorthogonal quantum mechanics , 2013, 1308.2609.

[56]  Liang Fu,et al.  Topological Band Theory for Non-Hermitian Hamiltonians. , 2017, Physical review letters.

[57]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[58]  Y. Hatsugai,et al.  Chern number and edge states in the integer quantum Hall effect. , 1993, Physical review letters.

[59]  J. Gong,et al.  Non-Hermitian Floquet topological phases with arbitrarily many real-quasienergy edge states , 2018, Physical Review B.

[60]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[61]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[62]  Barry Simon,et al.  Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase , 1983 .

[63]  Franco Nori,et al.  Edge Modes, Degeneracies, and Topological Numbers in Non-Hermitian Systems. , 2016, Physical review letters.

[64]  I. Sagnes,et al.  Lasing in topological edge states of a one-dimensional lattice , 2017, 1704.07310.

[65]  Hsin Lin,et al.  Colloquium : Topological band theory , 2016, 1603.03576.

[66]  S. Huber,et al.  Observation of phononic helical edge states in a mechanical topological insulator , 2015, Science.

[67]  H. Kogelnik,et al.  PMD fundamentals: polarization mode dispersion in optical fibers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Ying Hu,et al.  Fixed Points and Dynamic Topological Phenomena in a Parity-Time-Symmetric Quantum Quench , 2018, iScience.

[69]  H. Menke,et al.  Topological quantum wires with balanced gain and loss , 2017, 1701.09009.

[70]  F. Song,et al.  Non-Hermitian Chern Bands. , 2018, Physical review letters.

[71]  Y. Kivshar,et al.  Topological phase transitions and Thouless pumping of light in photonic waveguide arrays , 2016, 1603.01044.

[72]  Kevin P. Chen,et al.  Experimental realization of a Weyl exceptional ring , 2018, Nature Photonics.

[73]  Guang-Yao Huang,et al.  Topological invariance and global Berry phase in non-Hermitian systems , 2013, 1502.00443.

[74]  Z. Song,et al.  Bulk-boundary correspondence in a non-Hermitian system in one dimension with chiral inversion symmetry , 2018, Physical Review B.

[75]  Barry C Sanders,et al.  Observation of emergent momentum–time skyrmions in parity–time-symmetric non-unitary quench dynamics , 2018, Nature Communications.

[76]  Immanuel Bloch,et al.  Exploring 4D quantum Hall physics with a 2D topological charge pump , 2017, Nature.

[77]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[78]  H. Zhai,et al.  Hall conductance of a non-Hermitian Chern insulator , 2018, Physical Review B.

[79]  T. Fukui,et al.  Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances , 2005, cond-mat/0503172.

[80]  Qianhua Xu,et al.  Observation of three-component fermions in the topological semimetal molybdenum phosphide , 2017, Nature.

[81]  Tilman Esslinger,et al.  Experimental realization of the topological Haldane model with ultracold fermions , 2014, Nature.

[82]  Shu Chen,et al.  Topological invariants and phase diagrams for one-dimensional two-band non-Hermitian systems without chiral symmetry , 2018, Physical Review A.

[83]  Ulrich Kuhl,et al.  Dynamically encircling an exceptional point for asymmetric mode switching , 2016, Nature.

[84]  Immanuel Bloch,et al.  Direct measurement of the Zak phase in topological Bloch bands , 2012, Nature Physics.

[85]  Dmytro Pesin,et al.  Spintronics and pseudospintronics in graphene and topological insulators. , 2012, Nature materials.

[86]  Jian-Wei Pan,et al.  Uncover Topology by Quantum Quench Dynamics. , 2018, Physical review letters.

[87]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[88]  Chunlei Qu,et al.  Observation of Zitterbewegung in a spin-orbit-coupled Bose-Einstein condensate , 2013, 1301.0658.

[89]  Y. Chong,et al.  Exceptional points in a non-Hermitian topological pump , 2017, 1703.01293.

[90]  Henning Schomerus,et al.  Topologically Protected Defect States in Open Photonic Systems with Non-Hermitian Charge-Conjugation and Parity-Time Symmetry. , 2015, Physical review letters.

[91]  F. Haldane,et al.  Nobel lecture: Topological quantum matter , 2017 .

[92]  M. Bandres,et al.  Topological insulator laser: Theory , 2018, Science.

[93]  Y. Ashida,et al.  Topological Phases of Non-Hermitian Systems , 2018, Physical Review X.

[94]  Tanmoy Das,et al.  New topological invariants in non-Hermitian systems , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[95]  J. Asbóth,et al.  Detecting topological invariants in chiral symmetric insulators via losses , 2016, 1611.09670.

[96]  André Eckardt,et al.  Measuring topology from dynamics by obtaining the Chern number from a linking number , 2017, Nature Communications.

[97]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[98]  N. R. Cooper,et al.  Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms , 2014, Nature Physics.

[99]  R. Lu,et al.  Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems , 2018, 1802.04169.