Application of adaptive neuro-fuzzy inference system in modeling fatigue life under interspersed mixed-mode (I and II) spike overload

In service components and structures frequently come across complicated fatigue loading situations such as interspersed mixed-mode (I and II) spike load on subsequent mode-I fatigue crack growth. The designers rely on different fatigue life prediction methodology in order to avoid costly and time consuming fatigue tests. Earlier authors' have proposed exponential and ANN models to predict the fatigue life of 7020 T7 and 2024 T3 Al alloys under the above loading conditions. In the present work, an attempt has been made to predict the fatigue life by adopting adoptive neuro-fuzzy inference (ANFIS) technique. It is observed that the predicted results for both the alloys are within the maximum range of 0.05% in comparison to experimental findings.

[1]  S. B. Biner,et al.  Fatigue crack growth studies under mixed-mode loading , 2001 .

[2]  P. K. Ray,et al.  Evaluation of overload-induced fatigue crack growth retardation parameters using an exponential model , 2008 .

[3]  P. Heuler,et al.  Assessment of concepts for Fatigue Crack Initiation and propagation life prediction , 1986 .

[4]  Satish T. S. Bukkapatnam,et al.  A genetic algorithm for unified approach-based predictive modeling of fatigue crack growth , 2005 .

[5]  A. K. Vasudevan,et al.  Crack tip driving forces and crack growth representation under fatigue , 2004 .

[6]  Harald Zenner,et al.  Determination of S–N curves with the application of artificial neural networks , 1999 .

[7]  P. Vasudevan,et al.  Studies of mixed mode crack propagation in D16AT aluminium alloy , 1993 .

[8]  P. K. Ray,et al.  Prediction of residual fatigue life under interspersed mixed‐mode (I and II) overloads by Artificial Neural Network , 2009 .

[9]  M. Pecht,et al.  Fuzzy regression analysis for fatigue crack growth , 1990, [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis.

[10]  S. Suresh Fatigue of materials , 1991 .

[11]  Efstratios F. Georgopoulos,et al.  Comparison of genetic programming with conventional methods for fatigue life modeling of FRP composite materials , 2008 .

[12]  O. Canyurt Fatigue strength estimation of adhesively bonded tubular joint using genetic algorithm approach , 2004 .

[13]  Pravat Kumar Ray,et al.  Prediction of fatigue life with interspersed mode-I and mixed-mode (I and II) overloads by an exponential model: Extensions and improvements , 2009 .

[14]  Julio F. Davalos,et al.  An artificial neural network for the fatigue study of bonded FRP–wood interfaces , 2006 .

[15]  J. Willenborg,et al.  A Crack Growth Retardation Model Using an Effective Stress Concept , 1971 .

[16]  Farid Taheri,et al.  Proposed modifications to the Wheeler retardation model for multiple overloading fatigue life prediction , 2006 .

[17]  Harald Zenner,et al.  Lifetime calculation under variable amplitude loading with the application of artificial neural networks , 2005 .

[18]  Anastasios P. Vassilopoulos,et al.  Adaptive neuro-fuzzy inference system in modelling fatigue life of multidirectional composite laminates , 2008 .

[19]  H. Richard,et al.  Finite element analysis of fatigue crack growth with interspersed mode I and mixed mode overloads , 2005 .

[20]  A. U. De Koning,et al.  A Simple Crack Closure Model for Prediction of Fatigue Crack Growth Rates Under Variable-Amplitude Loading , 1981 .

[21]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[22]  H. Richard,et al.  Experimental and numerical investigations on the influence of the loading direction on the fatigue crack growth , 2006 .

[23]  M. A. Jarrah,et al.  Neuro-Fuzzy Modeling of Fatigue Life Prediction of Unidirectional Glass Fiber/Epoxy Composite Laminates , 2002 .

[24]  Jaime Domínguez,et al.  A statistical model for fatigue crack growth under random loads including retardation effects , 1999 .

[25]  V. V. Bolotin,et al.  Analytical model of fatigue crack growth retardation due to overloading , 1996 .

[26]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[27]  Kenan Genel,et al.  Application of artificial neural network for predicting strain-life fatigue properties of steels on the basis of tensile tests , 2004 .

[28]  Tarun Goswami,et al.  Prediction of elevated temperature fatigue crack growth rates in TI-6AL-4V alloy – neural network approach , 2004 .