Historical perspective and current trends in emission microscopy, mirror electron microscopy and low-energy electron microscopy. An introduction to the proceedings of the Second International Symposium and Workshop on Emission microscopy and Related Techniques.

Emission microscopes and related instruments comprise a specialized class of electron microscopes that have in common an acceleration field in combination with the first stage of imaging (i.e., an immersion objective lens, also called a cathode lens or emission lens). These imaging techniques include photoelectron emission microscopy (PEEM or PEM), electron emission induced by heat, ions, or neutral particles, mirror electron microscopy (MEM), and low-energy electron microscopy (LEEM), among others. In these instruments the specimen is placed on a flat cathode or is the cathode itself. The low-energy electrons that are emitted, reflected, or backscattered from the specimen are first accelerated and then imaged by means of an electron lens system resembling that of a transmission electron microscope. The image is formed in a parallel mode in all of the above instruments, in contrast to the image in scanning electron microscopes, where the information is collected sequentially by scanning the specimen. A brief history and introduction to emission microscopy, MEM, and LEEM is presented as a background for the Proceedings of the Second International Symposium and Workshop on this subject, held in Seattle, Washington, August 16-17, 1990. Current trends in this field gleaned from the presentations at that meeting are discussed.

[1]  L. Veneklasen Design of a spectroscopic low-energy electron microscope , 1991 .

[2]  Peter Hawkes,et al.  The Beginnings of electron microscopy , 1985 .

[3]  J. W. Andrew,et al.  High-resolution microanalysis of biological specimens by electron energy loss spectroscopy and by electron spectroscopic imaging. , 1980, Journal of ultrastructure research.

[4]  E. Ruska The early development of electron lenses and electron microscopy. , 1986, Microscopica acta. Supplement.

[5]  V. Zworykin On electron optics , 1933 .

[6]  Y. Uchikawa,et al.  Resolving power of the cathode lens. , 1970, Journal of Electron Microscopy.

[7]  R. F. Willis,et al.  The critical exponents of the Au(110) (1 × 2) ↔ (1 × 1) phase transition , 1985 .

[8]  B. Tonner Photoelectron holography for high-resolution spectromicroscopy , 1991 .

[9]  Congjun Wang,et al.  The morphology of carbon films and surfaces studied by photoemission electron microscopy , 1991 .

[10]  A. Septier,et al.  ION MICROSCOPY: HISTORY AND ACTUAL TRENDS , 1978 .

[11]  R. Morrow,et al.  Foundations of Quantum Mechanics , 1968 .

[12]  E. Bauer,et al.  An analytical reflection and emission UHV surface electron microscope , 1985 .

[13]  R. Heidenreich Thermionic Emission Microscopy of Metals. II. Transformations in Plain Carbon Steels , 1955 .

[14]  W. J. Baxter,et al.  A photoemission electron microscope using an electron multiplier array , 1973 .

[15]  M. E. Barnett,et al.  A mirror electron microscope using magnetic lenses , 1967 .

[16]  R. M. Oman Electron Mirror Microscopy , 1969 .

[17]  A. Sibai,et al.  Mirror Electron Microscopy (MEM): Work function and imaging of an electron beam biased junction of silicon (100) , 1984 .

[18]  G. H. Scott,et al.  An electron microscope study of magnesium and calcium in striated muscle , 1939 .

[19]  G. Rempfer,et al.  The resolution of photoelectron microscopes with UV, X-ray, and synchrotron excitation sources. , 1989, Ultramicroscopy.

[20]  R. Howe,et al.  Chemistry and Physics of Solid Surfaces VIII , 1990 .

[21]  M. Mundschau Emission microscopy and surface science , 1991 .

[22]  G. Clark The Encyclopedia of Microscopy , 1961 .

[23]  J. Heydenreich,et al.  Electron microscopy in solid state physics , 1987 .

[24]  E. Bauer,et al.  Initial epitaxial growth of copper silicide on Si{111} studied by low-energy electron microscopy and photoemission electron microscopy , 1989 .

[25]  J. Perrin,et al.  Scanning x‐ray radiography: First tests in an electron spectrometer , 1982 .

[26]  G. Rempfer A theoretical study of the hyperbolic electron mirror as a correcting element for spherical and chromatic aberration in electron optics , 1990 .

[27]  R. Pantel,et al.  Oxygen adsorption on various vicinal faces close to the (0001) basal plane of rhenium , 1979 .

[28]  M. Klaua,et al.  Photo-electron emission microscopy of work function changes , 1983 .

[29]  R. Pantel,et al.  Continuous measurement of surface potential variations during oxygen adsorption on the (100), (110) and (111) faces of niobium using mirror electron microscope , 1977 .

[30]  E. Bauer The possibilities for analytical methods in photoemission and low-energy microscopy , 1991 .

[31]  E. F. Burton,et al.  The Electron Microscope , 1942 .

[32]  G. Ertl,et al.  Methods and application of UV photoelectron microscopy in heterogenous catalysis , 1991 .

[33]  R. Pantel,et al.  Mirror electron microscopy applied to the continuous local measurement of work-function variations , 1980 .

[34]  W. Skoczylas,et al.  Design and performance of a high-resolution photoelectron microscope. , 1991, Ultramicroscopy.

[35]  G. Ertl,et al.  The scanning photoemission microscope: a novel tool in surface science , 1991 .

[36]  T Mulvey Forty years of electron microscopy , 1973 .

[37]  V. Kolarik,et al.  Selected area low energy electron diffraction and microscopy , 1985 .

[38]  W. J. Baxter,et al.  Photoemission electron microscopy of oxide fracture at slip steps on metals , 1975 .

[39]  Electron Mirror Microscopy of Patterns Recorded on Magnetic Tape , 1958 .

[40]  L. Veneklasen Scanning versus direct imaging emission microscopy , 1991 .

[41]  E. Bauer,et al.  Surface studies by low-energy electron microscopy (LEEM) and conventional UV photoemission electron microscopy (PEEM) , 1989 .

[42]  Ludwig A. Mayer Electron Mirror Microscopy of Magnetic Stray Fields on Grain Boundaries , 1959 .

[43]  G. Massey,et al.  Nonlinear organic photoemitters: Their properties and possible applications in electron microscopy , 1991 .

[44]  M. Imam,et al.  Photoemission electron microscopy in metallurgical research: applications using the balzers KE3 metioscope , 1991 .

[45]  D. W. Turner,et al.  Photoelectron emission: images and spectra , 1984 .

[46]  Bianki Vl,et al.  Hemispheric specialization in animals , 1977 .

[47]  W. J. Baxter,et al.  The effect of oxide thickness on photostimulated exoelectron emission from aluminum , 1978 .

[48]  R. F. Willis,et al.  A mirror electron microscope for surface analysis , 1985 .

[49]  H. Liebl,et al.  Low-energy electron microscope of novel design , 1990 .

[50]  G. Rempfer,et al.  Unipotential electrostatic lenses: Paraxial properties and aberrations of focal length and focal point , 1985 .

[51]  U. Valdré,et al.  Surface and Interface Characterization by Electron Optical Methods , 1989 .

[52]  D L Habliston,et al.  A computer-aided control, design and image-processing system for electron microscopes. , 1991, Ultramicroscopy.

[53]  Ludwig A. Mayer On Electron Mirror Microscopy , 1955 .

[54]  R. Heidenreich Thermionic Emission Microscopy of Metals. Part I. General , 1955 .

[55]  Willis,et al.  Au(110) (1 x 2)-to-(1 x 1) phase transition: A physical realization of the two-dimensional Ising model. , 1985, Physical review letters.

[56]  G. Birrell,et al.  Bibliography on emission microscopy, mirror electron microscopy, low-energy electron microscopy and related techniques: 1985–1991 , 1991 .

[57]  Y. Kondo,et al.  Design features of an ultrahigh-vacuum electron microscope for REM-PEEM studies of surfaces , 1991 .

[58]  Mark C. Reuter,et al.  Design of a new photo-emission/low-energy electron microscope for surface studies , 1991 .

[59]  G. Birrell,et al.  Biological applications of photoelectron imaging: a practical perspective. , 1991, Ultramicroscopy.

[60]  P. Pianetta,et al.  Synchrotron-based imaging with a magnetic projection photoelectron microscope , 1991 .

[61]  G. A. Morton,et al.  Electron Optics And The Electron Microscope , 1945 .

[62]  M. Kordesch,et al.  A UHV-compatible photoelectron emission microscope for applications in surface science , 1991 .

[63]  W. Skoczylas,et al.  A proposed modular imaging system for photoelectron and electron probe microscopy with aberration correction, and for mirror microscopy and low-energy electron microscopy , 1991 .