Efficient Solvers for Some Classes of Time-Periodic Eddy Current Optimal Control Problems

In this paper, we present and discuss the results of our numerical studies of preconditioned MinRes methods for solving the optimality systems arising from the multiharmonic finite element approximations to time-periodic eddy current optimal control problems in different settings including different observation and control regions, different tracking terms, as well as box constraints for the Fourier coefficients of the state and the control. These numerical studies confirm the theoretical results published by the first author in a recent paper.

[1]  F. Tröltzsch,et al.  PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages , 2012 .

[2]  Irwin Yousept,et al.  Optimal control of Maxwell’s equations with regularized state constraints , 2012, Comput. Optim. Appl..

[3]  Timothy A. Davis,et al.  A column pre-ordering strategy for the unsymmetric-pattern multifrontal method , 2004, TOMS.

[4]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[5]  Ulrich Langer,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics A Robust Preconditioned-MinRes-Solver for Distributed Time-Periodic Eddy Current Optimal Control , 2011 .

[6]  Ulrich Langer,et al.  A robust finite element solver for a multiharmonic parabolic optimal control problem , 2013, Comput. Math. Appl..

[7]  Timothy A. Davis,et al.  A combined unifrontal/multifrontal method for unsymmetric sparse matrices , 1999, TOMS.

[8]  Moritz Diehl,et al.  Nested multigrid methods for time-periodic, parabolic optimal control problems , 2011, Comput. Vis. Sci..

[9]  Panayot S. Vassilevski,et al.  PARALLEL AUXILIARY SPACE AMG FOR H(curl) PROBLEMS , 2009 .

[10]  Michael Kolmbauer Efficient solvers for multiharmonic eddy current optimal control problems with various constraints and their analysis , 2013 .

[11]  Michael R. Greenberg,et al.  Chapter 1 – Theory, Methods, and Applications , 1978 .

[12]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[13]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[14]  Jinchao Xu,et al.  Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..

[15]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[16]  K. Hoffmann,et al.  Optimal Control of Partial Differential Equations , 1991 .

[17]  Michael Kolmbauer,et al.  A preconditioned MinRes solver for time‐periodic parabolic optimal control problems , 2013, Numer. Linear Algebra Appl..