Antimonide-based compound semiconductors for electronic devices: A review

Several research groups have been actively pursuing antimonide-based electronic devices in recent years. The advantage of narrow-bandgap Sb-based devices over conventional GaAs- or InP-based devices is the attainment of high-frequency operation with much lower power consumption. This paper will review the progress on three antimonide-based electronic devices: high electron mobility transistors (HEMTs), resonant tunneling diodes (RTDs), and heterojunction bipolar transistors (HBTs). Progress on the HEMT includes the demonstration of Ka- and W-band low-noise amplifier circuits that operate at less than one-third the power of similar InP-based circuits. The RTDs exhibit excellent figures of merit but, like their InP- and GaAs-based counterparts, are waiting for a viable commercial application. Several approaches are being investigated for HBTs, with circuits reported using InAs and InGaAs bases.

[1]  J. Moon,et al.  Experimental demonstration of split side-gated resonant interband tunneling devices , 2004 .

[2]  T. C. McGill,et al.  New negative differential resistance device based on resonant interband tunneling , 1989 .

[3]  Electron spin polarization in resonant interband tunneling devices , 2002, cond-mat/0211300.

[4]  H. Goronkin,et al.  An exclusive-nor based on resonant interband tunneling FET's , 1996, IEEE Electron Device Letters.

[5]  Mark Johnson,et al.  Magnetoelectronic latching Boolean gate , 2000 .

[6]  M. Rodwell,et al.  Reduction of the unintentional background electron density in AlSb/InAs/AlSb quantum wells , 2003 .

[7]  Hiroshi Hiroshima,et al.  Diameter dependence of current–voltage characteristics of ultrasmall area AlSb–InAs resonant tunneling diodes with diameters down to 20 nm , 1997 .

[8]  S. P. Watkins,et al.  InP/GaAsSb/InP double HBTs: a new alternative for InP-based DHBTs , 2001 .

[9]  Brian R. Bennett,et al.  Molecular beam epitaxy of Sb-based semiconductors , 1998 .

[10]  Leo Esaki,et al.  Molecular‐beam epitaxy (MBE) of In1−xGaxAs and GaSb1−yAsy , 1977 .

[11]  R. Chau Benchmarking nanotechnology for high-performance and low-power logic transistor applications , 2004 .

[12]  J. Schulman,et al.  Experimental investigation of the temperature dependence of InAs-AlSb-GaSb Resonant Interband tunnel diodes , 2004, IEEE Transactions on Electron Devices.

[13]  Charge-collection dynamics of AlSb-InAs-GaSb resonant interband tunneling diodes (RITDs) [for MOBILE , 2001 .

[14]  Herbert Kroemer,et al.  Effects of interface layer sequencing on the transport properties of InAs/AlSb quantum wells: Evidence for antisite donors at the InAs/AlSb interface , 1990 .

[15]  E. Ozbay,et al.  1.7-ps, microwave, integrated-circuit-compatible InAs/AlSb resonant tunneling diodes , 1993, IEEE Electron Device Letters.

[16]  M. Rodwell,et al.  RF noise performance of low power InAs/AlSb HFETs , 2003, 61st Device Research Conference. Conference Digest (Cat. No.03TH8663).

[17]  W. K. Liu,et al.  High-mobility electron systems in remotely-doped InSb quantum wells , 1999 .

[18]  K. Ensslin,et al.  Magneto-transport in InAs/AlSb quantum wells with large electron concentration modulation , 1992 .

[19]  J. B. Boos,et al.  Materials Growth for InAs High Electron Mobility Transistors and Circuits , 2004 .

[20]  H. Kroemer,et al.  Influence of impact ionization on the drain conductance in InAs-AlSb quantum well heterostructure field-effect transistors , 1995, IEEE Electron Device Letters.

[21]  Y.K. Boegeman,et al.  High-performance antimonide-based heterostructure backward diodes for millimeter-wave detection , 2002, IEEE Electron Device Letters.

[22]  Jerry R. Meyer,et al.  Type‐II quantum‐well lasers for the mid‐wavelength infrared , 1995 .

[23]  H. Kroemer,et al.  Improved charge control and frequency performance in InAs/AlSb-based heterostructure field-effect transistors , 1994, IEEE Electron Device Letters.

[24]  A. Cho,et al.  The effects of GaSb/InAs broken gap on interband tunneling current of a GaSb/InAs/GaSb/AlSb/InAs tunneling structure , 1992 .

[25]  D. Chow,et al.  Fabrication and performance of InAs-based heterojunction bipolar transistors , 2003, International Conference onIndium Phosphide and Related Materials, 2003..

[26]  T. C. Mcgill,et al.  Observation of large peak‐to‐valley current ratios and large peak current densities in AlSb/InAs/AlSb double‐barrier tunnel structures , 1989 .

[27]  J. B. Boos,et al.  A W-band InAs/AlSb low-noise/low-power amplifier , 2005, IEEE Microwave and Wireless Components Letters.

[28]  Brian R. Bennett,et al.  Resonant interband tunnel diodes with AlGaSb barriers , 2001 .

[29]  J. C. Culbertson,et al.  Characterization of one-dimensional quantum channels in InAs/AlSb , 2002 .

[30]  D. Harame,et al.  SiGe heterojunction bipolar transistors and circuits toward terahertz communication applications , 2004, IEEE Transactions on Microwave Theory and Techniques.

[31]  G. Tuttle,et al.  Electron concentrations and mobilities in AlSb/InAs/AlSb quantum wells , 1989 .

[32]  W. I. Wang,et al.  Resonant interband coupling in single‐barrier heterostructures of InAs/GaSb/InAs and GaSb/InAs/GaSb , 1990 .

[33]  Walter Kruppa,et al.  AlSb/InAs HEMT's for low-voltage, high-speed applications , 1998 .

[34]  T. C. Mcgill,et al.  Demonstration of large peak‐to‐valley current ratios in InAs/AlGaSb/InAs single‐barrier heterostructures , 1989 .

[35]  Y. Royter,et al.  High frequency InAs-channel HEMTs for low power ICs , 2003, IEEE International Electron Devices Meeting 2003.

[36]  J. B. Boos,et al.  0.1 [micro sign]m AlSb/InAs HEMTs with InAs subchannel , 1998 .

[37]  J. B. Boos,et al.  Growth of InAsSb-channel high electron mobility transistor structures , 2005 .

[38]  W. I. Wang,et al.  Narrow-gap InAs for heterostructure tunnelling , 1990 .

[39]  W. H. Weinberg,et al.  Effects of surface reconstruction on III–V semiconductor interface formation: The role of III/V composition , 1999 .

[40]  S. Datta,et al.  Novel InSb-based quantum well transistors for ultra-high speed, low power logic applications , 2004, Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004..

[41]  F. Capasso,et al.  Impact ionization in the base of a hot‐electron AlSb/InAs bipolar transistor , 1990 .

[42]  B. Hull,et al.  Design of a shallow thermally stable ohmic contact to p-type InGaSb , 2003 .

[43]  B. R. Bennett,et al.  Microwave noise characteristics of AlSb/InAs HEMTs , 1997 .

[44]  David Z. Ting,et al.  Large peak current densities in novel resonant interband tunneling heterostructures , 1990 .

[46]  S. P. Watkins,et al.  300 GHz InP/GaAsSb/InP Double HBTs with High Current Capability and V , 2001 .

[47]  H. Goronkin,et al.  Static random access memories based on resonant interband tunneling diodes in the InAs/GaSb/AlSb material system , 1994, 52nd Annual Device Research Conference.

[48]  M. Rodwell,et al.  An ultra-low power InAs/AlSb HEMT Ka-band low-noise amplifier , 2004, IEEE Microwave and Wireless Components Letters.

[49]  W. I. Wang,et al.  Resonant tunneling and intrinsic bistability in GaSb-based double barrier heterostructures , 1996 .

[50]  Mark Johnson,et al.  Hybrid Hall effect device , 1997 .

[51]  J. Zinck,et al.  Bias and temperature dependence of Sb-based heterostructure millimeter-wave detectors with improved sensitivity , 2004, IEEE Electron Device Letters.

[52]  MECHANISMS OF VALLEY CURRENTS IN INAS/ALSB/GASB RESONANT INTERBAND TUNNELING DIODES , 1995 .

[53]  J. Bergman,et al.  Low-voltage, high-performance InAs/AlSb HEMTs with power gain above 100 GHz at 100 mV drain bias , 2004, Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC..

[54]  E. Jackson,et al.  Universal behavior in irradiated high-electron-mobility transistors , 2002 .

[55]  W. I. Wang,et al.  Resonant tunneling in AlSb/InAs/AlSb double‐barrier heterostructures , 1988 .

[56]  B. Brar,et al.  n/sup +/-InAs-InAlAs recess gate technology for InAs-channel millimeter-wave HFETs , 2005, IEEE Transactions on Electron Devices.

[57]  T. C. Mcgill,et al.  Experimental observation of negative differential resistance from an InAs/GaSb interface , 1990 .

[58]  Magnetotunneling between two-dimensional electron gases in InAs-AlSb-GaSb heterostructures , 2003, cond-mat/0304035.

[59]  J. Schulman,et al.  Intrinsic current bistability in InAs/AlxGa1−xSb resonant tunneling devices , 1994 .

[60]  G. Wicks,et al.  InAs-based bipolar transistors grown by molecular beam epitaxy , 2002 .

[61]  Walter Kruppa,et al.  Low-frequency noise in AlSb/InAs high-electron-mobility transistor structure as a function of temperature and illumination , 2004 .

[62]  S. Yamada,et al.  Spontaneous spin-splitting observed in resonant tunneling diode with narrow band-gap asymmetric quantum well , 2002 .

[63]  M. Barsky,et al.  Manufacturable AlSb / InAs HEMT Technology for Ultra-Low Power Millimeter-Wave Integrated Circuits , 2004 .

[64]  Pinaki Mazumder,et al.  Resonant tunneling diodes: models and properties , 1998, Proc. IEEE.

[65]  B. R. Bennett,et al.  Controlled n-type doping of antimonides and arsenides using GaTe , 2003 .

[66]  B. R. Bennett,et al.  Proton irradiation of InAs/AlSb/GaSb resonant interband tunneling diodes , 2001 .

[67]  Improvement of peak‐to‐valley ratio by the incorporation of the InAs layer into the GaSb/AlSb/GaSb/AlSb/InAs double barrier resonant interband tunneling structure , 1992 .

[68]  A. Y. Cho,et al.  On the effect of the barrier widths in the InAs/AlSb/GaSb single‐barrier interband tunneling structures , 1990 .

[69]  Influence of the interface composition of InAs/AlSb superlattices on their optical and structural properties , 1995 .

[70]  J. B. Boos,et al.  Charge-collection characteristics of low-power ultrahigh speed, metamorphic AlSb/InAs high-electron mobility transistors (HEMTs) , 2000 .

[71]  W. Williamson,et al.  InAs/AlSb/GaSb resonant interband tunneling diodes and Au-on-InAs/AlSb-superlattice Schottky diodes for logic circuits , 1996, IEEE Electron Device Letters.

[72]  G. May,et al.  Charge modification in InAs/AlxGa1−xSb HEMT structures , 2004 .

[73]  A. S. Bracker,et al.  Nonvolatile reprogrammable logic elements using hybrid resonant tunneling diode–giant magnetoresistance circuits , 2001 .

[74]  C. T. Elliott,et al.  Uncooled high‐speed InSb field‐effect transistors , 1995 .

[75]  Wilkinson,et al.  Resonant tunneling through the bound states of a single donor atom in a quantum well. , 1992, Physical review letters.

[76]  C. D. Parker,et al.  Resonant tunnel diodes as submillimetre-wave sources , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[77]  G. Borghs,et al.  Molecular beam epitaxy and characterization of heterostructures for magnetic sensing applications , 1998 .

[78]  D. Chow,et al.  InAs/AlSb dual-gate HFETs , 1996, IEEE Electron Device Letters.

[79]  J. B. Boos,et al.  Modeling of ultra-low-power AlSb/InAs HEMT-RITD circuits , 2000, Conference Proceedings. 2000 International Conference on Indium Phosphide and Related Materials (Cat. No.00CH37107).

[80]  W. I. Wang,et al.  Application of split-gate and dual-gate field-effect transistor designs to InAs field-effect transistors , 1990 .

[81]  InAlAsSb/InGaSb double heterojunction bipolar transistor , 2005 .

[82]  A. Cho,et al.  Interband tunneling between valence‐band and conduction‐band quantum wells in a GaSb/AlSb/InAs/AlSb/GaSb/AlSb/InAs triple‐barrier structure , 1992 .

[83]  J. B. Boos,et al.  Monolithic integration of resonant interband tunneling diodes and high electron mobility transistors in the InAs/GaSb/AlSb material system , 2000 .

[84]  R. Venkatasubramanian,et al.  Heuristic rules for group IV dopant site selection in III?V compounds , 1997 .

[85]  Lawrence E. Larson,et al.  Ultra-high speed modulation-doped field-effect transistors: a tutorial review , 1992, Proc. IEEE.

[86]  R. Ludeke Electronic properties of (100) surfaces of GaSb and InAs and their alloys with GaAs , 1978 .

[87]  Supriyo Datta,et al.  Spin-filter device based on the Rashba effect using a nonmagnetic resonant tunneling diode. , 2002, Physical review letters.

[88]  A. Milnes,et al.  Indium arsenide: a semiconductor for high speed and electro-optical devices , 1993 .

[89]  T. C. Mcgill,et al.  Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes , 1991 .

[90]  A. Cho,et al.  A new GaSb/AlSb/GaSb/AlSb/InAs double‐barrier interband tunneling diode and its tunneling mechanism , 1990 .

[91]  J. Pekarik,et al.  An AlSb–InAs–AlSb double‐heterojunction P‐n‐P bipolar transistor , 1992 .

[92]  J. B. Boos,et al.  High radiation tolerance of InAs∕AlSb high-electron-mobility transistors , 2005 .

[93]  Observation of resonant tunneling in InSb/AlInSb double‐barrier structures , 1991 .

[94]  Martin Walther,et al.  High performance InAs/Ga1-xInxSb superlattice infrared photodiodes , 1997 .

[95]  M. Barsky,et al.  Metamorphic AlSb/InAs HEMT for low-power, high-speed electronics , 2003, 25th Annual Technical Digest 2003. IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2003..

[96]  Tsui,et al.  Evidence for LO-phonon-emission-assisted tunneling in double-barrier heterostructures. , 1987, Physical review. B, Condensed matter.

[97]  B. R. Bennett,et al.  Shallow and thermally stable Pt∕W∕Au Ohmic contacts to p-type InGaSb , 2005 .

[98]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[99]  Resonant interband tunneling in InAs/GaSb/AlSb/InAs and GaSb/InAs/AlSb/GaSb heterostructures , 1990 .

[100]  J. Schulman Analysis of Sb-based resonant interband tunnel diodes for circuit modeling , 1999 .

[101]  T. C. Mcgill,et al.  InAs/AlSb double-barrier structure with large peak-to-valley current ratio: a candidate for high-frequency microwave devices , 1990, IEEE Electron Device Letters.

[102]  A. Krotkus,et al.  Measurement of the hot-electron conductivity in semiconductors using ultrafast electric pulses , 1989 .

[103]  Clifton G. Fonstad,et al.  Peak‐to‐valley current ratios as high as 50:1 at room temperature in pseudomorphic In0.53Ga0.47As/AlAs/InAs resonant tunneling diodes , 1992 .

[104]  H. Kitabayashi,et al.  Resonant interband tunneling current in InAs/AlSb/GaSb/AlSb/InAs double barrier diodes , 1998 .

[105]  B. V. Shanabrook,et al.  Antimony-based quaternary alloys for high-speed low-power electronic devices , 2002, Proceedings. IEEE Lester Eastman Conference on High Performance Devices.

[106]  E. Brown,et al.  Effect of lattice-mismatched growth on InAs/AlSb resonant-tunneling diodes , 1994 .

[107]  Partha S. Dutta,et al.  The physics and technology of gallium antimonide: An emerging optoelectronic material , 1997 .

[108]  B. Gelmont,et al.  A novel interband-resonant-tunneling-diode(I-RTD) based high-frequency oscillator , 2003, International Semiconductor Device Research Symposium, 2003.

[109]  H. Kroemer,et al.  Surface‐layer modulation of electron concentrations in InAs–AlSb quantum wells , 1993 .

[110]  M. Rodwell,et al.  Design and characteristics of strained InAs/InAlAs composite-channel heterostructure field-effect transistors , 2005 .

[111]  Walter Kruppa,et al.  Ohmic contacts in AlSb/InAs high electron mobility transistors for low-voltage operation , 1999 .

[112]  W. I. Wang,et al.  Interband tunneling in polytype GaSb/AlSb/InAs heterostructures , 1989 .

[113]  Gary H. Bernstein,et al.  12 GHz clocked operation of ultralow power interband resonant tunneling diode pipelined logic gates , 1997, IEEE J. Solid State Circuits.

[114]  AIGaAsSb Buffer/Barrier on GaAs substrate for InAs channel devices with high electron mobility and practical reliability , 1996 .

[115]  M. L. Lovejoy,et al.  Demonstration of npn InAs bipolar transistors with inverted base doping , 1996, IEEE Electron Device Letters.

[116]  Ekmel Ozbay,et al.  Resonant tunneling diodes for switching applications , 1989 .

[117]  W. K. Liu,et al.  Thin Films: Heteroepitaxial Systems , 1999 .

[118]  Heterojunction bipolar transistor utilising AlGaSb/GaSb alloy system , 1988 .

[119]  Gary W. Wicks,et al.  InAs-based heterojunction bipolar transistors , 2002 .

[120]  C. Wood ’’Surface exchange’’ doping of MBE GaAs from S and Se ’’captive sources’’ , 1978 .

[121]  A. G. Milnes,et al.  Gallium antimonide device related properties , 1993 .

[122]  J. B. Boos,et al.  Modulation doping of InAs/AlSb quantum wells using remote InAs donor layers , 1998 .

[123]  J. Schulman,et al.  InAs/antimonide-based resonant tunneling structures with ternary alloy layers , 1994 .

[124]  T. C. McGill,et al.  Oscillations up to 712 GHz in InAs/AlSb resonant‐tunneling diodes , 1991 .

[125]  B. R. Bennett,et al.  Low-frequency noise characteristics of AlSb/InAsSb HEMTs , 2004 .

[126]  N. Kuze,et al.  InAs deep quantum well structures and their application to Hall elements , 1995 .

[127]  D. Chow,et al.  High-transconductance delta-doped InAs/AlSb HFETs with ultrathin silicon-doped InAs quantum well donor layer , 1998, IEEE Electron Device Letters.

[128]  B. R. Bennett,et al.  Sulfur passivation for shallow Pd∕W∕Au ohmic contacts to p-InGaSb , 2004 .

[129]  R. Matyi,et al.  Effect of interface roughness on performance of AlGaAs/InGaAs/GaAs resonant tunneling diodes , 1998 .

[130]  G. Tuttle,et al.  N- type doping of gallium antimonide and aluminum antimonide grown by molecular beam epitaxy using lead telluride as a tellurium dopant source , 1988 .

[131]  Photoluminescence of InAs 1-x Sb x /AlSb single quantum wells: Transition from type-II to type-I band alignment , 2000 .

[132]  A. E. Wetsel,et al.  Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. , 1988, Physical review letters.

[133]  I. Vurgaftman,et al.  Ferromagnetic resonant interband tunneling diode , 2003 .

[134]  T. Kuech,et al.  Fabrication of InAs/AlSb/GaSb heterojunction bipolar transistors on Al2O3 substrates by wafer bonding , 2001 .

[135]  Mitsuaki Yano,et al.  Molecular Beam Epitaxy of GaSb and GaSbxAs1-x , 1978 .

[136]  K. Nomoto,et al.  Experimental evidence of surface conduction in AlSb–InAs tunneling diodes , 1999 .

[137]  Thomas,et al.  Determination of one-dimensional subband spacings in InAs/AlSb ballistic constrictions using magnetic-field measurements. , 1994, Physical review. B, Condensed matter.

[138]  J. Schulman,et al.  Sb-heterostructure interband backward diodes , 2000, IEEE Electron Device Letters.

[139]  H. Yokoyama,et al.  InP-based strained In/sub 0.8/Ga/sub 0.2/As/AlAs resonant tunneling diodes with high peak-current density and large peak-to-valley current ratio grown by metal-organic vapor-phase epitaxy , 2003, International Conference onIndium Phosphide and Related Materials, 2003..

[140]  G. Wicks,et al.  Low-voltage InAsP/InAs HBT and metamorphic InAs BJT devices grown by molecular beam epitaxy , 2003 .

[141]  G. W. Turner,et al.  Molecular-beam epitaxial growth of high-mobility n-GaSb , 1993 .