Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation.

We have measured optical second-harmonic generation (SHG) from atomically thin samples of MoS2 and h-BN with one to five layers. We observe strong SHG from materials with odd layer thickness, for which a noncentrosymmetric structure is expected, while the centrosymmetric materials with even layer thickness do not yield appreciable SHG. SHG for materials with odd layer thickness was measured as a function of crystal orientation. This dependence reveals the rotational symmetry of the lattice and is shown to provide a purely optical method of determining the orientation of crystallographic axes. We report values for the nonlinearity of monolayers and odd-layers of MoS2 and h-BN and compare the variation as a function of layer thickness with a model that accounts for wave propagation effects.

[1]  G. Korenowski,et al.  Second-harmonic generation in molybdenum disulfide , 1998 .

[2]  T. Ishii,et al.  Growth of single crystals of hexagonal boron nitride , 1983 .

[3]  K. Hagimoto,et al.  Determination of the second-order susceptibility of ammonium dihydrogen phosphate and α-quartz at 633 and 1064 nm. , 1995, Applied optics.

[4]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[5]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[6]  T. Ohta,et al.  Controlling the Electronic Structure of Bilayer Graphene , 2006, Science.

[7]  K. Mak,et al.  Observation of intense second harmonic generation from MoS 2 atomic crystals , 2013, 1304.4289.

[8]  P. Ajayan,et al.  Second harmonic microscopy of monolayer MoS 2 , 2013, 1302.3935.

[9]  J. Shan,et al.  Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. , 2009, Physical review letters.

[10]  Yaochun Shen,et al.  Optical Second Harmonic Generation at Interfaces , 1989 .

[11]  Nicolaas Bloembergen,et al.  Light waves at the boundary of nonlinear media , 1962 .

[12]  Evan J. Reed,et al.  Intrinsic Piezoelectricity in Two-Dimensional Materials , 2012 .

[13]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[14]  T. Heinz,et al.  SECOND-ORDER NONLINEAR OPTICAL EFFECTS AT SURFACES AND INTERFACES: RECENT ADVANCES , 1995 .

[15]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[16]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[17]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[18]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[19]  J. McGilp Epioptics: linear and non-linear optical spectroscopy of surfaces and interfaces , 1990 .

[20]  E. Reed,et al.  Flexural electromechanical coupling: a nanoscale emergent property of boron nitride bilayers. , 2013, Nano letters.

[21]  H. Hughes,et al.  Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2 , 1979 .

[22]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[23]  D. Nikogosyan,et al.  Nonlinear Optical Crystals: A Complete Survey , 2005 .

[24]  F. Guinea,et al.  Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. , 2006, Physical review letters.

[25]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[26]  R. S. Pease An X‐ray study of boron nitride , 1952 .

[27]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[28]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[29]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  K. Michel,et al.  Phonon dispersions and piezoelectricity in bulk and multilayers of hexagonal boron nitride , 2011 .

[31]  Takashi Taniguchi,et al.  Hunting for monolayer boron nitride: optical and Raman signatures. , 2011, Small.

[32]  K. Michel,et al.  Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride , 2009 .

[33]  M. Levenson The principles of nonlinear optics , 1985, IEEE Journal of Quantum Electronics.