Mastoparan binding induces a structural change affecting both the N‐terminal and C‐terminal domains of calmodulin

[1]  S. Forsén,et al.  Chapter 4 – Biophysical Studies of Calmodulin , 1986 .

[2]  D. Blumenthal,et al.  Interaction of calmodulin and a calmodulin-binding peptide from myosin light chain kinase: major spectral changes in both occur as the result of complex formation. , 1985, Biochemistry.

[3]  D. Giedroc,et al.  Differential trace labeling of calmodulin: investigation of binding sites and conformational states by individual lysine reactivities. Effects of beta-endorphin, trifluoperazine, and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. , 1985, The Journal of biological chemistry.

[4]  R. Reid The functional nature of calcium binding units in calmodulin, troponin C and parvalbumin. , 1985, Journal of theoretical biology.

[5]  G. Sanyal,et al.  Probable role of amphiphilicity in the binding of mastoparan to calmodulin. , 1985, Biochemistry.

[6]  Charles E. Bugg,et al.  Three-dimensional structure of calmodulin , 1985, Nature.

[7]  A. Edelman,et al.  Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[8]  W. DeGrado,et al.  The interaction of calmodulin with amphiphilic peptides. , 1985, The Journal of biological chemistry.

[9]  S. Forsén,et al.  CHAPTER 3 – The Interaction of Various Drugs with Calmodulin as Monitored by 113Cd NMR , 1985 .

[10]  D. Hartshorne,et al.  Calmodulin antagonists and cellular physiology , 1985 .

[11]  S. Chao,et al.  Activation of calmodulin by various metal cations as a function of ionic radius. , 1984, Molecular pharmacology.

[12]  D. Malencik,et al.  Peptide binding by calmodulin and its proteolytic fragments and by troponin C. , 1984, Biochemistry.

[13]  D. Newton,et al.  Agonist and antagonist properties of calmodulin fragments. , 1984, The Journal of biological chemistry.

[14]  J. Cox,et al.  Structural changes in melittin and calmodulin upon complex formation and their modulation by calcium. , 1983, Biochemistry.

[15]  D. Malencik,et al.  High affinity binding of the mastoparans by calmodulin. , 1983, Biochemical and biophysical research communications.

[16]  H. Vogel,et al.  Calcium‐dependent hydrophobic interaction chromatography of calmodulin, troponin C and their proteolytic fragments , 1983 .

[17]  S. Forsén,et al.  43Ca NMR studies of calcium binding to proteins: Interpretation of experimental data by bandshape analysis , 1983 .

[18]  H. Vogel,et al.  Cadmium-113 nuclear magnetic resonance studies of proteolytic fragments of calmodulin: assignment of strong and weak cation binding sites. , 1983, Biochemistry.

[19]  N. Ling,et al.  Demonstration by covalent cross-linking of a specific interaction between beta-endorphin and calmodulin. , 1983, The Journal of biological chemistry.

[20]  J. Cox,et al.  Ca2+-dependent high-affinity complex formation between calmodulin and melittin. , 1983, The Biochemical journal.

[21]  D. Malencik,et al.  Functional interactions between smooth muscle myosin light chain kinase and calmodulin. , 1982, Biochemistry.

[22]  D. Malencik,et al.  Binding of simple peptides, hormones, and neurotransmitters by calmodulin. , 1982, Biochemistry.

[23]  C. Kitada,et al.  A new mast cell degranulating peptide "mastoparan" in the venom of Vespula lewisii. , 1979, Chemical & pharmaceutical bulletin.

[24]  S. Forsén,et al.  113Cd NMR in the study of calcium binding proteins: Troponin C , 1979, FEBS letters.