Regularity criterion for 3d navier-stokes equations in terms of the direction of the velocity

In this short note we give a link between the regularity of the solution u to the 3D Navier-Stokes equation and the behavior of the direction of the velocity u/|u|. It is shown that the control of div(u/|u|) in a suitable Lt/p (Lx/q) norm is enough to ensure global regularity. The result is reminiscent of the criterion in terms of the direction of the vorticity, introduced first by Constantin and Fefferman. However, in this case the condition is not on the vorticity but on the velocity itself. The proof, based on very standard methods, relies on a straightforward relation between the divergence of the direction of the velocity and the growth of energy along streamlines.

[1]  E. Hopf,et al.  Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .

[2]  Yong Zhou,et al.  A New Regularity Criterion for the Navier-Stokes Equations in Terms of the Gradient of One Velocity Component , 2002 .

[3]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[4]  S. Kaniel,et al.  The initial value problem for the navier-stokes equations , 1966 .

[5]  Л Искауриаза,et al.  $L_{3,\infty}$-решения уравнений Навье - Стокса и обратная единственность@@@$L_{3,\infty}$-solutions of the Navier - Stokes equations and backward uniqueness , 2003 .

[6]  H.BeirāodaVeiga A New Regularity Class for the Navier-Stokes Equations in IR^n , 1995 .

[7]  Hideo Kozono,et al.  Bilinear estimates in BMO and the Navier-Stokes equations , 2000 .

[8]  Cheng He Regularity for solutions to the Navier-Stokes equations with one velocity component regular , 2002 .

[9]  J. Serrin The initial value problem for the Navier-Stokes equations , 1963 .

[10]  Vladimir Sverak,et al.  L3,∞-solutions of the Navier-Stokes equations and backward uniqueness , 2003 .

[11]  B. Jones,et al.  The initial value problem for the Navier-Stokes equations with data in Lp , 1972 .

[12]  N. A. Shananin Regularity of solutions to the Navier-Stokes equations , 1996 .

[13]  Michael Struwe,et al.  On partial regularity results for the navier‐stokes equations , 1988 .

[14]  Milan Pokorný,et al.  Some New Regularity Criteria for the Navier-Stokes Equations Containing Gradient of the Velocity , 2004 .

[15]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .