Nonlinear differential equation for fatigue damage evolution, using a micromechanical model
暂无分享,去创建一个
[1] E. Altus. A cohesive micromechanic fatigue model. Part I: Basic mechanisms , 1991 .
[2] Sivasambu Mahesh,et al. Size and heterogeneity effects on the strength of fibrous composites , 1999 .
[3] B. Fedelich. A stochastic theory for the problem of multiple surface crack coalescence , 1998 .
[4] W. Weibull. A Statistical Distribution Function of Wide Applicability , 1951 .
[5] A. Pineau,et al. Short crack effects in fracture and fatigue , 1995 .
[6] T. Mura,et al. A Theory of Fatigue Crack Initiation in Solids , 1990 .
[7] Howard E. Boyer,et al. Atlas of Fatigue Curves , 1986 .
[8] D. Krajcinovic,et al. Creep rupture of polymers-a statistical model , 1997 .
[9] F. Reif,et al. Fundamentals of Statistical and Thermal Physics , 1965 .
[10] Stéphane Roux,et al. Damage cascade in a softening interface , 1999 .
[11] H. O. Fuchs,et al. Metal fatigue in engineering , 2001 .
[12] Dusan Krajcinovic,et al. Damage and Fracture of Disordered Materials , 2000 .
[13] C Bathias,et al. LA FATIGUE DES MATERIAUX ET DES STRUCTURES , 1980 .
[14] E. Altus,et al. A two-dimensional micromechanic fatigue model , 1995 .
[15] L. N. McCartney,et al. Statistical Theory of the Strength of Fiber Bundles , 1983 .
[16] A. Pineau. The Randomness of Fatigue and Fracture Behaviour in Metallic Materials and Mechanical Structures , 2001 .
[17] B. W. Rosen,et al. A statistical theory of material strength with application to composite materials , 1970 .