Incorporating Directional Uncertainties into Polynomial Chaos Expansions for Astronautics Problems
暂无分享,去创建一个
[1] Brandon A. Jones,et al. Probability of Collision Estimation and Optimization Under Uncertainty Utilizing Separated Representations , 2020 .
[2] Kyle J. DeMars,et al. Angular Correlation Using Rogers-Szegő-Chaos , 2020, Mathematics.
[3] J. Miquel Torta,et al. Modelling by Spherical Cap Harmonic Analysis: A Literature Review , 2019, Surveys in Geophysics.
[4] B. Jones,et al. Stochastic Expansions Including Data on the Unit Circle , 2019 .
[5] M. Eldred,et al. Polynomial chaos expansions for dependent random variables , 2019, Computer Methods in Applied Mechanics and Engineering.
[6] Kanti V. Mardia,et al. A New Unified Approach for the Simulation of a Wide Class of Directional Distributions , 2018 .
[7] Hans Petter Langtangen,et al. Multivariate Polynomial Chaos Expansions with Dependent Variables , 2018, SIAM J. Sci. Comput..
[8] J. Avery,et al. Hyperspherical Harmonics and Their Physical Applications , 2017 .
[9] Luke B. Winternitz,et al. Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission , 2017 .
[10] A. Doostan,et al. Orbit uncertainty propagation and sensitivity analysis with separated representations , 2016, Celestial Mechanics and Dynamical Astronomy.
[11] A. Doostan,et al. Multi-Element Trajectory Models for Satellite Tour Missions , 2016 .
[12] Brandon A. Jones,et al. Postmaneuver Collision Probability Estimation Using Sparse Polynomial Chaos Expansions , 2015 .
[13] Alireza Doostan,et al. Satellite collision probability estimation using polynomial chaos expansions , 2013 .
[14] Gerhard Kurz,et al. Unscented Orientation Estimation Based on the Bingham Distribution , 2013, IEEE Transactions on Automatic Control.
[15] Kyle J. DeMars,et al. Entropy-Based Approach for Uncertainty Propagation of Nonlinear Dynamical Systems , 2013 .
[16] Yuan Xu,et al. Approximation Theory and Harmonic Analysis on Spheres and Balls , 2013 .
[17] A. Doostan,et al. Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polynomial Chaos , 2013 .
[18] Michèle Lavagna,et al. Nonlinear Mapping of Uncertainties in Celestial Mechanics , 2013 .
[19] W. Nowak,et al. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion , 2012, Reliab. Eng. Syst. Saf..
[20] Daniel J. Scheeres,et al. Analytical Nonlinear Propagation of Uncertainty in the Two-Body Problem , 2012 .
[21] Aubrey B. Poore,et al. Gaussian Sum Filters for Space Surveillance: Theory and Simulations , 2011 .
[22] S. R. Jammalamadaka,et al. Directional Statistics, I , 2011 .
[23] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[24] H. Owhadi,et al. A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..
[25] W. Folkner,et al. The Planetary and Lunar Ephemeris DE 421 , 2009 .
[26] H. Elman,et al. DESIGN UNDER UNCERTAINTY EMPLOYING STOCHASTIC EXPANSION METHODS , 2008 .
[27] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[28] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[29] Roger G. Ghanem,et al. Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..
[30] A. Saltelli,et al. Making best use of model evaluations to compute sensitivity indices , 2002 .
[31] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[32] John L. Junkins,et al. Non-Gaussian error propagation in orbital mechanics , 1996 .
[33] Y. C. Pati,et al. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.
[34] W. Gautschi. Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1993, TOMS.
[35] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[36] G. V. Haines. Spherical cap harmonic analysis , 1985 .
[37] J. Kent. The Fisher‐Bingham Distribution on the Sphere , 1982 .
[38] W. Gautschi. On Generating Orthogonal Polynomials , 1982 .
[39] J. Dormand,et al. High order embedded Runge-Kutta formulae , 1981 .
[40] Christopher Bingham. An Antipodally Symmetric Distribution on the Sphere , 1974 .
[41] D. Anderson,et al. Algorithms for minimization without derivatives , 1974 .
[42] G. Domokos,et al. Four-Dimensional Symmetry , 1967 .
[43] N. Wiener. The Homogeneous Chaos , 1938 .
[44] Kyle J. DeMars,et al. Uncertainty Propagation of Correlated Quaternion and Euclidean States using the Gauss-Bingham Density , 2016 .
[45] Gerhard Kurz,et al. Recursive Bingham filter for directional estimation involving 180 degree symmetry , 2014 .
[46] Gitta Kutyniok. Compressed Sensing , 2012 .
[47] W. Chen. LINEAR FUNCTIONAL ANALYSIS , 2008 .