Primary and secondary precipitates in a hierarchical-precipitate-strengthened ferritic alloy

Abstract The microstructures of a hierarchical-precipitate-strengthened ferritic alloy are characterized, using transmission-electron microscopy (TEM) and atom-probe tomography (APT). The alloy shows duplex precipitates. The primary precipitate with an average edge length of 90 nm consists of NiAl- and Ni2TiAl-type phases, while the secondary precipitate with an average radius of 2 nm is a NiAl-type phase. Based on the APT results, the volume fractions of the primary and secondary precipitates were calculated, using the lever rule to be 17.3 and 2.3%, respectively.

[1]  Yanfei Gao,et al.  Deformation mechanisms in a precipitation-strengthened ferritic superalloy revealed by in situ neutron diffraction studies at elevated temperatures , 2015 .

[2]  Fujio Abe,et al.  Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions , 2003, Nature.

[3]  Mark Asta,et al.  New design aspects of creep-resistant NiAl-strengthened ferritic alloys , 2013 .

[4]  Sangho Kim,et al.  Brittle intermetallic compound makes ultrastrong low-density steel with large ductility , 2015, Nature.

[5]  David J. Larson,et al.  Local Electrode Atom Probe Tomography: A User's Guide , 2013 .

[6]  K. An,et al.  From embryos to precipitates: A study of nucleation and growth in a multicomponent ferritic steel , 2011 .

[7]  I. A. Shchenkova,et al.  New martensitic steels for fossil power plant: Creep resistance , 2010 .

[8]  David C. Dunand,et al.  Creep properties and microstructure of a precipitation-strengthened ferritic Fe–Al–Ni–Cr alloy , 2014 .

[9]  Michael K Miller,et al.  Characterization of nanoscale NiAl-type precipitates in a ferritic steel by electron microscopy and atom probe tomography , 2010 .

[10]  Jan Ilavsky,et al.  Duplex Precipitates and Their Effects on the Room-temperature Fracture Behaviour of a NiAl-Strengthened Ferritic Alloy , 2015 .

[11]  Yanfei Gao,et al.  In Situ Neutron-Diffraction Studies on the Creep Behavior of a Ferritic Superalloy , 2011, Metallurgical and Materials Transactions A.

[12]  N. Komai,et al.  Evaluation of Long-Term Creep Rupture Strength of Tungsten-Strengthened Advanced 9-12%Cr Steels , 1999 .

[13]  Fujio Abe,et al.  CREEP BEHAVIOR AND STABILITY OF MX PRECIPITATES AT HIGH TEMPERATURE IN 9CR–0.5MO–1.8W–VNB STEEL , 2001 .

[14]  J. R. Weertman,et al.  Coarsening and morphology of β′ particles in Fe-Ni-Al-Mo ferritic alloys , 1988 .

[15]  Joshua R. Smith,et al.  Formation of Y-Ti-O nanoclusters in nanostructured ferritic alloys : A first-principles study , 2009 .

[16]  H. Fraser,et al.  Atomic scale structure and chemical composition across order-disorder interfaces. , 2009, Physical review letters.

[17]  R. Viswanathan,et al.  Materials for ultrasupercritical coal power plants—Boiler materials: Part 1 , 2001 .

[18]  Jonathan D. Poplawsky,et al.  Microstructural evolution of single Ni2TiAl or hierarchical NiAl/Ni2TiAl precipitates in Fe-Ni-Al-Cr-Ti ferritic alloys during thermal treatment for elevated-temperature applications , 2017 .

[19]  V. Radmilović,et al.  On the formation of hierarchically structured L21-Ni2TiAl type precipitates in a ferritic alloy , 2013, Journal of Materials Science.

[20]  Kazuhiro Kimura,et al.  Long-term Creep Strength of Creep Strength Enhanced Ferritic Steels , 2007 .

[21]  R. Viswanathan,et al.  Materials for ultra-supercritical coal-fired power plant boilers , 2006 .

[22]  Peter K. Liaw,et al.  Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy , 2015, Scientific Reports.

[23]  Y. Yamamoto,et al.  Creep-Resistant, Al2O3-Forming Austenitic Stainless Steels , 2007, Science.

[24]  Bjørn Clausen,et al.  Neutron-diffraction study and modeling of the lattice parameters of a NiAl-precipitate-strengthened Fe-based alloy , 2012 .

[25]  M. Fine,et al.  Coarsening kinetics of coherent NiAl-type precipitates in FeNiAl and FeNiAlMo alloys , 1984 .

[26]  T. Noda,et al.  The role of microstructural instability on creep behavior of a martensitic 9Cr-2W steel , 1992 .

[27]  Joseph K. L. Lai,et al.  Creep behavior of a β′(NiAl) precipitation strengthened ferritic Fe–Cr–Ni–Al alloy , 1998 .

[28]  A. Czyrska-Filemonowicz,et al.  Recent advances in creep-resistant steels for power plant applications , 2003 .

[29]  K. Kakehi Effect of primary and secondary precipitates on creep strength of Ni-base superalloy single crystals , 2000 .

[30]  Gerhard Sauthoff,et al.  The strengthening effect of (Ni, Fe)Al precipitates on the mechanical properties at high temperatures of ferritic Fe–Al–Ni–Cr alloys , 2005 .

[31]  Kouichi Maruyama,et al.  Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants , 2009 .

[32]  Gunther Eggeler,et al.  The effect of long-term creep on particle coarsening in tempered martensite ferritic steels , 1989 .

[33]  F. Willaime,et al.  Formation mechanism and the role of nanoparticles in Fe-Cr ODS steels developed for radiation tolerance , 2010 .