Halogen-Bonded Supramolecular Capsules in the Solid State, in Solution, and in the Gas Phase.

Supramolecular capsules were assembled by neutral halogen bonding (XB) and studied in the solid state, in solution, and in the gas phase. The geometry of the highly organized capsules is shown by an X-ray crystal structure which features the assembly of two XB hemispheres, geometrically rigidified by H-bonding to eight MeOH molecules and encapsulation of two benzene guests. To enhance capsular association strength, tuning the XB donor is more efficient than tuning the XB acceptor, due to desolvation penalties in protic solvents, as shown for a tetraquinuclidine XB acceptor hemisphere. With a tetra(iodoethynyl) XB donor and a tetralutidine XB acceptor, the association in deuterated benzene/acetone/methanol 70:30:1 at 283 K reaches Ka =(2.11±0.39)×105  m-1 (ΔG=-6.9±0.1 kcal mol-1 ). The stability of the XB capsules in the gas phase was confirmed by electrospray ionization mass spectrometry (ESI-MS). A new guest binding site was uncovered within the elongated iodoethynyl capsule.

[1]  Pierangelo Metrangolo,et al.  Chalcogen bonding in crystal engineering , 2005, Acta Crystallographica Section A Foundations and Advances.

[2]  Ngong Kodiah Beyeh,et al.  [N⋅⋅⋅I+ ⋅⋅⋅N] Halogen-Bonded Dimeric Capsules from Tetrakis(3-pyridyl)ethylene Cavitands. , 2016, Angewandte Chemie.

[3]  K. Sugita,et al.  Iodoalkyne-Based Catalyst-Mediated Activation of Thioamides through Halogen Bonding. , 2016, Chemistry, an Asian journal.

[4]  S. Huber,et al.  Halogen Bonding in Organic Synthesis and Organocatalysis. , 2016, Chemistry.

[5]  Orion B. Berryman,et al.  A Halogen-Bond-Induced Triple Helicate Encapsulates Iodide. , 2016, Angewandte Chemie.

[6]  S. Grimme,et al.  Halogen bonded supramolecular capsules: a challenging test case for quantum chemical methods. , 2016, Chemical communications.

[7]  P. Beer,et al.  Halogen bonding anion recognition. , 2016, Chemical communications.

[8]  Pierangelo Metrangolo,et al.  The Halogen Bond , 2016, Chemical reviews.

[9]  A. Pappalardo,et al.  Assembling of Supramolecular Capsules with Resorcin[4]arene and Calix[n]arene Building Blocks , 2015 .

[10]  F. Diederich,et al.  Halogenverbrückte molekulare Kapseln , 2015 .

[11]  F. Diederich,et al.  Halogen bonding molecular capsules. , 2015, Angewandte Chemie.

[12]  Ngong Kodiah Beyeh,et al.  Concerted Halogen-Bonded Networks with N-Alkyl Ammonium Resorcinarene Bromides: From Dimeric Dumbbell to Capsular Architectures. , 2015, Journal of the American Chemical Society.

[13]  C. Aakeröy,et al.  Crystal Engineering with Iodoethynylnitrobenzenes: A Group of Highly Effective Halogen-Bond Donors , 2015 .

[14]  Ngong Kodiah Beyeh,et al.  A Halogen-Bonded Dimeric Resorcinarene Capsule. , 2015, Angewandte Chemie.

[15]  Ngong Kodiah Beyeh,et al.  N-Alkyl ammonium resorcinarene salts: multivalent halogen-bonded deep-cavity cavitands , 2015 .

[16]  F. Diederich,et al.  Molekulare Erkennung in chemischen und biologischen Systemen , 2015 .

[17]  F. Diederich,et al.  Molecular recognition in chemical and biological systems. , 2015, Angewandte Chemie.

[18]  U. Schubert,et al.  Anion receptors based on halogen bonding with halo-1,2,3-triazoliums. , 2015, The Journal of organic chemistry.

[19]  Y. Cohen,et al.  Diffusion NMR of molecular cages and capsules. , 2015, Chemical Society reviews.

[20]  P. Beer,et al.  Halogen Bonding in Supramolecular Chemistry. , 2008, Chemical reviews.

[21]  Ngong Kodiah Beyeh,et al.  Tetraiodoethynyl resorcinarene cavitands as multivalent halogen bond donors. , 2014, Chemical communications.

[22]  S. Huber,et al.  Toward molecular recognition: three-point halogen bonding in the solid state and in solution. , 2014, Journal of the American Chemical Society.

[23]  F. Diederich,et al.  Halogen bonding of (iodoethynyl)benzene derivatives in solution. , 2014, Organic letters.

[24]  G. Desiraju,et al.  Halogen bonds in crystal engineering: like hydrogen bonds yet different. , 2014, Accounts of chemical research.

[25]  A. Navarro‐Vázquez,et al.  Preparation and characterization of a halogen-bonded shape-persistent chiral alleno-acetylenic inclusion complex. , 2014, Organic letters.

[26]  P. Metrangolo,et al.  Supramolecular hierarchy among halogen-bond donors. , 2013, Chemistry.

[27]  Pierangelo Metrangolo,et al.  Definition of the halogen bond (IUPAC Recommendations 2013) , 2013 .

[28]  E. Herdtweck,et al.  Organokatalyse mit neutralen mehrzähnigen Halogenbrückendonoren , 2013 .

[29]  S. Huber,et al.  Organocatalysis by neutral multidentate halogen-bond donors. , 2013, Angewandte Chemie.

[30]  Pierangelo Metrangolo,et al.  The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances , 2013, Accounts of chemical research.

[31]  Paulo J. Costa,et al.  A Catenane Assembled through a Single Charge-Assisted Halogen Bond , 2013, Angewandte Chemie.

[32]  Jonathan R. Nitschke,et al.  Building on architectural principles for three-dimensional metallosupramolecular construction. , 2013, Chemical Society reviews.

[33]  A. Joerger,et al.  Principles and applications of halogen bonding in medicinal chemistry and chemical biology. , 2013, Journal of medicinal chemistry.

[34]  A. Rajbanshi,et al.  The quest for a molecular capsule assembled via halogen bonds , 2012 .

[35]  M. Erdélyi,et al.  Halogen bonding in solution. , 2012, Chemical Society reviews.

[36]  Zhan-Ting Li,et al.  C-H···O hydrogen bonding induced triazole foldamers: efficient halogen bonding receptors for organohalogens. , 2012, Angewandte Chemie.

[37]  Nobuo Shimma,et al.  Halogen Bonding at the Active Sites of Human Cathepsin L and MEK1 Kinase: Efficient Interactions in Different Environments , 2011, ChemMedChem.

[38]  E. Herdtweck,et al.  Halogenbrücken‐induzierte Aktivierung einer Kohlenstoff‐ Heteroatom‐Bindung , 2011 .

[39]  S. Huber,et al.  Halogen-bond-induced activation of a carbon-heteroatom bond. , 2011, Angewandte Chemie.

[40]  P. Beer,et al.  A bidentate halogen-bonding bromoimidazoliophane receptor for bromide ion recognition in aqueous media. , 2011, Angewandte Chemie.

[41]  D. Banner,et al.  Systematische Untersuchung von Halogenbrücken in Protein‐Ligand‐ Wechselwirkungen , 2011 .

[42]  François Diederich,et al.  Systematic investigation of halogen bonding in protein-ligand interactions. , 2011, Angewandte Chemie.

[43]  P. Beer,et al.  Enhancement of anion recognition exhibited by a halogen-bonding rotaxane host system. , 2010, Journal of the American Chemical Society.

[44]  Mark S. Taylor,et al.  A tridentate halogen-bonding receptor for tight binding of halide anions. , 2010, Angewandte Chemie.

[45]  Mohammed G. Sarwar,et al.  Thermodynamics of halogen bonding in solution: substituent, structural, and solvent effects. , 2010, Journal of the American Chemical Society.

[46]  J. Rebek Molecular behavior in small spaces. , 2009, Accounts of chemical research.

[47]  C. Hunter,et al.  Non-covalent interactions between iodo-perfluorocarbons and hydrogen bond acceptors. , 2009, Chemical communications.

[48]  J. Foley,et al.  Discovery of novel 1-azoniabicyclo[2.2.2]octane muscarinic acetylcholine receptor antagonists. , 2009, Journal of medicinal chemistry.

[49]  Pierangelo Metrangolo,et al.  Halogenbrücken in der supramolekularen Chemie , 2008 .

[50]  Pierangelo Metrangolo,et al.  Halogen bonding in supramolecular chemistry. , 2008, Angewandte Chemie.

[51]  W. Hamama,et al.  Chemistry of quinuclidines as nitrogen bicyclic bridged‐ring structures , 2006 .

[52]  D. Reinhoudt,et al.  Triple-ion interactions for the construction of supramolecular capsules. , 2006, Journal of the American Chemical Society.

[53]  P. Metrangolo,et al.  A halogen-bonding-based heteroditopic receptor for alkali metal halides. , 2005, Journal of the American Chemical Society.

[54]  J. Rebek,et al.  Extended Cavitands of Nanoscale Dimensions , 2005 .

[55]  Yoram Cohen,et al.  Diffusions‐NMR‐Spektroskopie in der Supramolekularen und Kombinatorischen Chemie: ein alter Parameter – neue Erkenntnisse , 2005 .

[56]  Yoram Cohen,et al.  Diffusion NMR spectroscopy in supramolecular and combinatorial chemistry: an old parameter--new insights. , 2005, Angewandte Chemie.

[57]  K. Yamaguchi,et al.  Guest-induced assembly of tetracarboxyl-cavitand and tetra(3-pyridyl)-cavitand into a heterodimeric capsule via hydrogen bonds and CH-halogen and/or CH-pi interaction: control of the orientation of the encapsulated guest. , 2003, Journal of the American Chemical Society.

[58]  S. R. Seidel,et al.  High-symmetry coordination cages via self-assembly. , 2002, Accounts of chemical research.

[59]  J. Rebek,et al.  Water-stabilized cavitands. , 2002, Journal of the American Chemical Society.

[60]  R. Warmuth,et al.  Recent highlights in hemicarcerand chemistry. , 2001, Accounts of chemical research.

[61]  A. Renslo,et al.  Encapsulation of Ion−Molecule Complexes: Second-Sphere Supramolecular Chemistry , 1999 .

[62]  Dmitry M. Rudkevich,et al.  Synthese und Charakterisierung einer unimolekularen Kapsel , 1999 .

[63]  J. Rebek,et al.  Synthesis and Characterization of a Unimolecular Capsule. , 1999, Angewandte Chemie.

[64]  J. M. Rivera,et al.  Structural Examination of Supramolecular Architectures by Electrospray Ionization Mass Spectrometry , 1999 .

[65]  J. Rebek,et al.  Investigating Molecular Recognition by Mass Spectrometry: Characterization of Calixarene-Based Self-Assembling Capsule Hosts with Charged Guests , 1999 .

[66]  Kenneth N. Raymond,et al.  The rational design of high symmetry coordination clusters , 1999 .

[67]  E. Dalcanale,et al.  Metal‐Induced Self‐Assembly of Cavitand‐Based Cage Molecules , 1997 .

[68]  E. Dalcanale,et al.  Metallinduzierte Selbstorganisation von Cavitanden zu Käfigmolekülen , 1997 .

[69]  W. Vogt,et al.  Hydrogen bonded homo- and heterodimers of tetra urea derivatives of calix[4]arenes , 1996 .

[70]  S. Nagao,et al.  Guest-Induced Organization of a Three-Dimensional Palladium(II) Cagelike Complex. A Prototype for "Induced-Fit" Molecular Recognition. , 1995, Journal of the American Chemical Society.

[71]  Julius Rebek,et al.  Bildung eines Hohlraums durch Dimerisierung selbstkomplementärer Moleküle über Wasserstoffbrückenbindungen , 1993 .

[72]  J. Rebek,et al.  A Synthetic Cavity Assembles Through Self-Complementary Hydrogen Bonds† , 1993 .

[73]  Young Hwan Kim,et al.  Shell closure of two cavitands forms carcerand complexes with components of the medium as permanent guests , 1985 .

[74]  T. Dziembowska,et al.  1-Iodoacetylenes. 1. Spectroscopic evidence of their complexes with Lewis bases. A spectroscopic scale of soft basicity , 1981 .

[75]  B. Schaub,et al.  A Reexamination of Inductive Substituent Constants Derived from pKa Values of 4-Substituted Quinuclidines. Polar effects. Part VIII , 1980 .

[76]  E. E. Mikhlina,et al.  Synthesis of 4-aminoquinuclidine and its derivatives , 1969 .

[77]  C. Grob,et al.  Untersuchungen in der Chinuclidin-Reihe. 2. Mitteilung. 4-Chinuclidin-carbonsäure , 1954 .