Limit theorems for discretely observed stochastic volatility models

A general set-up is proposed to study stochastic volatility models. We consider here a two-dimensional diffusion process (Yt, Vt) and assume that only (Yt) is observed at n discrete times with regular sampling interval A. The unobserved coordinate (Vt) is an ergodic diffusion which rules the diffusion coefficient (or volatility) of (Yt). The following asymptotic framework is used: the sampling interval tends to 0, while the number of observations and the length of the observation time tend to infinity. We study the empirical distribution associated with the observed increments of (Yt). We prove that it converges in probability to a variance mixture of Gaussian laws and obtain a central limit theorem. Examples of models widely used in finance, and included in this framework, are given.

[1]  T. Pitcher,et al.  Parameter estimation for stochastic processes , 1964 .

[2]  C. Laredo,et al.  A Sufficient Condition for Asymptotic Sufficiency of Incomplete Observations of a Diffusion Process , 1990 .

[3]  Dean P. Foster,et al.  Asypmtotic Filtering Theory for Univariate Arch Models , 1994 .

[4]  Stephen L Taylor,et al.  The magnitude of implied volatility smiles: theory and empirical evidence for exchange rates , 1994 .

[5]  Stephen L Taylor,et al.  The incremental volatility information in one million foreign exchange quotations , 1997 .

[6]  John B. Moore,et al.  Hidden Markov Models: Estimation and Control , 1994 .

[7]  Louis O. Scott Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application , 1987, Journal of Financial and Quantitative Analysis.

[8]  M. Chesney,et al.  Pricing European Currency Options: A Comparison of the Modified Black-Scholes Model and a Random Variance Model , 1989, Journal of Financial and Quantitative Analysis.

[9]  Dean P. Foster,et al.  Asypmtotic Filtering Theory for Univariate Arch Models , 1994 .

[10]  M. Sørensen,et al.  Martingale estimation functions for discretely observed diffusion processes , 1995 .

[11]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[12]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[13]  Mathieu Kessler Estimation of an Ergodic Diffusion from Discrete Observations , 1997 .

[14]  D. Florens-zmirou,et al.  Estimation of the coefficients of a diffusion from discrete observations , 1986 .

[15]  Daniel B. Nelson,et al.  Filtering and Forecasting with Misspecified Arch Models Ii: Making the Right Forecast with the Wrong Model , 1992 .

[16]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[17]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[18]  Jean Jacod,et al.  On the estimation of the diffusion coefficient for multi-dimensional diffusion processes , 1993 .

[19]  Valentine Genon-Catalot,et al.  Maximnm contrast estimation for diffusion processes from discrete observations , 1990 .

[20]  B. Leblanc Une approche unifiée pour une forme exacte du prix d'une option dans les différents modèles a volatilité stochastique , 1996 .

[21]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[22]  On estimating the diffusion coefficient , 1987 .

[23]  R. Fortet,et al.  Théorème de limite centrale pour une diffusion et pour sa discrétisée , 1984 .