Lattice models of biological growth.

We show that very simple iterative rules for the growth of cells on a two-dimensional lattice can simulate biological-growth phenomena realistically. We discuss random cellular automata models for the growth of fern gametophytes, branching fungi, and leaves, and for shape transformations useful in the study of biological variation and evolution. Although there are interesting analogies between biological and physical growth processes, we stress the uniqueness of biological automata behavior. The computer growth algorithms that successfully mimic observed growth behavior may be helpful in determining the underlying biochemical mechanisms of growth regulation.