Cyclic codes over $${{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}$$
暂无分享,去创建一个
In this work, we focus on cyclic codes over the ring $${{{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}}$$ , which is not a finite chain ring. We use ideas from group rings and works of AbuAlrub et.al. in (Des Codes Crypt 42:273–287, 2007) to characterize the ring $${({{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2})/(x^n-1)}$$ and cyclic codes of odd length. Some good binary codes are obtained as the images of cyclic codes over $${{{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}}$$ under two Gray maps that are defined. We also characterize the binary images of cyclic codes over $${{{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}}$$ in general.