Dielectric Constant and van der Waals Interlayer Interaction of MoS2-Graphene Heterostructures

The dielectric screening is one of the most fundamental properties of 2D materials which is used to characterize electronic properties such as storage capacity of charge or energy. We numerically investigate three potential heterostructures of MoS2-Graphene and their corresponding interlayer interactions. Applying a density-functional approach to the lowest energy structure of the interlayer, we find that, within a lower field regime (≲ 10 MV/cm), the dielectric constant is independent of the vertical electric field and dependent of the interlayer distance and stacking pattern of heterostructures composed of MoS2 and Graphene. From the calculation results of the induced charge throughout the heterostructure, we find how the van der Waals interaction influences the dielectric constant.

[1]  A. Jang,et al.  Stacking of Two-Dimensional Materials in Lateral and Vertical Directions , 2014 .

[2]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[3]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[4]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[5]  K. L. Shepard,et al.  Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2013, Nature.

[6]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[7]  D. Mayou,et al.  Localization of dirac electrons in rotated graphene bilayers. , 2009, Nano letters.

[8]  Pablo Jarillo-Herrero,et al.  Emergence of superlattice Dirac points in graphene on hexagonal boron nitride , 2012, Nature Physics.

[9]  S. Louie,et al.  Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure. , 2012, Physical review letters.

[10]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[11]  K. Novoselov,et al.  High-temperature superfluidity with indirect excitons in van der Waals heterostructures , 2014, Nature Communications.

[12]  Li Yang,et al.  Theoretical investigation of the vertical dielectric screening dependence on defects for few-layered van der Waals materials , 2019, RSC advances.

[13]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[14]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[15]  T. Taniguchi,et al.  Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure , 2013, Science.

[16]  Li Yang,et al.  Off-Plane Dielectric Screening of Few-Layer Graphdiyne and Its Family. , 2019, ACS applied materials & interfaces.

[17]  Yafei Zhang,et al.  Design of Hetero-Nanostructures on MoS2 Nanosheets To Boost NO2 Room-Temperature Sensing. , 2018, ACS applied materials & interfaces.

[18]  T. Heinz,et al.  Ultrafast dynamics in van der Waals heterostructures , 2018, Nature Nanotechnology.

[19]  Yan Li,et al.  Direct Vapor Phase Growth and Optoelectronic Application of Large Band Offset SnS2/MoS2 Vertical Bilayer Heterostructures with High Lattice Mismatch , 2016 .

[20]  Seongjun Park,et al.  Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio , 2016, Nature Communications.

[21]  Hsin-Ying Chiu,et al.  Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures , 2014, Nature Communications.

[22]  A. Reina,et al.  Observation of Van Hove singularities in twisted graphene layers , 2009, 0912.2102.

[23]  Moon J. Kim,et al.  Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures , 2015, Nature Communications.

[24]  A. Reina,et al.  Single-layer behavior and its breakdown in twisted graphene layers. , 2010, Physical review letters.

[25]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[26]  P. Kim,et al.  Heterostructures based on inorganic and organic van der Waals systems , 2014 .

[27]  Z. Tian,et al.  Catalysis with Two‐dimensional Materials and Their Heterostructures , 2016 .

[28]  A. Geim,et al.  Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene , 2006, cond-mat/0602565.

[29]  Picosecond photoresponse in van der Waals heterostructures. , 2015, Nature nanotechnology.

[30]  Zhongfan Liu,et al.  Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method , 2015, Nature Communications.

[31]  M. Goldflam,et al.  Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. , 2015, Nature nanotechnology.

[32]  D. Costanzo,et al.  Gate-induced superconductivity in atomically thin MoS2 crystals. , 2015, Nature nanotechnology.

[33]  M. Potemski,et al.  Cloning of Dirac fermions in graphene superlattices , 2013, Nature.

[34]  Yongtao Li,et al.  Novel Optical and Electrical Transport Properties in Atomically Thin WSe2/MoS2 p–n Heterostructures , 2015 .

[35]  Li Yang,et al.  Vertical dielectric screening of few-layer van der Waals semiconductors. , 2017, Nanoscale.

[36]  Chaoyi Yan,et al.  2D Nanomaterial Arrays for Electronics and Optoelectronics , 2018 .

[37]  Hui Li,et al.  Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition. , 2011, Nano letters.

[38]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.