1,2,4-Triazolo[1,5-a]quinoxaline as a Versatile Tool for the Design of Selective Human A3 Adenosine Receptor Antagonists: Synthesis, Biological Evaluation, and Molecular Modeling Studies of 2-(Hetero)aryl- and 2-Carboxy-Substitued Derivatives

A number of 4-oxo-substituted 1,2,4-triazolo[1,5-a]quinoxaline derivatives bearing at position-2 the claimed (hetero)aryl moiety (compounds 1−15) but also a carboxylate group (16−28, 32−36) or a hydrogen atom (29−31) were designed as human A3 (hA3) adenosine receptor (AR) antagonists. This study produced some interesting compounds and among them the 2-(4-methoxyphenyl)-1,2,4-triazolo[1,5-a]quinoxalin-4-one (8), which can be considered one of the most potent and selective hA3 adenosine receptor antagonists reported till now. Moreover, as a new finding, replacement of the classical 2-(hetero)aryl moiety with a 2-carboxylate function (compounds 16−28 and 32−36) maintained good hA3 AR binding activity but, most importantly and interestingly, produced a large increase in hA3 versus hA1 selectivity. A receptor-based SAR analysis provided new interesting insights about the steric and electrostatic requirements that are important for the anchoring of these derivatives at the hA3 receptor recognition site, thus hi...