Strain gradient drives lithium dendrite growth from the atomic-scale simulations

[1]  Scott J. Litzelman,et al.  Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries , 2022, Nature Energy.

[2]  Jiayan Luo,et al.  Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination. , 2019, Accounts of chemical research.

[3]  Ji‐Guang Zhang,et al.  Origin of lithium whisker formation and growth under stress , 2019, Nature Nanotechnology.

[4]  P. Gao,et al.  Atomic-Scale Measurement of Flexoelectric Polarization at SrTiO_{3} Dislocations. , 2018, Physical review letters.

[5]  Bin Liu,et al.  Advancing Lithium Metal Batteries , 2018 .

[6]  Wenwen Xu,et al.  Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates , 2018 .

[7]  Tianyou Zhai,et al.  Reviving Lithium‐Metal Anodes for Next‐Generation High‐Energy Batteries , 2017, Advanced materials.

[8]  R. Wu,et al.  A promising single atom catalyst for CO oxidation: Ag on boron vacancies of h-BN sheets. , 2017, Physical chemistry chemical physics : PCCP.

[9]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[10]  V. Viswanathan,et al.  Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes. , 2017, Physical review letters.

[11]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[12]  Yan‐Bing He,et al.  Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes , 2016, Advanced materials.

[13]  Jin Ge,et al.  Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. , 2016, Nano letters.

[14]  Hyun-Wook Lee,et al.  Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth , 2016, Nature Energy.

[15]  Ya‐Xia Yin,et al.  Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes , 2015, Nature Communications.

[16]  Dong Jin Lee,et al.  A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries , 2015 .

[17]  S. Pennycook,et al.  Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films , 2015, Science.

[18]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[19]  A. Bower,et al.  Growth of whiskers from Sn surfaces: Driving forces and growth mechanisms , 2013 .

[20]  Thomas F. Miller,et al.  Suppression of Dendrite Formation via Pulse Charging in Rechargeable Lithium Metal Batteries , 2012 .

[21]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[22]  C. Fisher,et al.  Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery , 2011 .

[23]  E. Chason,et al.  Compressive stress generation in sn thin films and the role of grain boundary diffusion. , 2009, Physical review letters.

[24]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[25]  J. Tarascon,et al.  Lithium metal stripping/plating mechanisms studies: A metallurgical approach , 2006 .

[26]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[27]  L. Freund,et al.  Origin of compressive residual stress in polycrystalline thin films. , 2002, Physical review letters.

[28]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[29]  J. Yamaki,et al.  A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte , 1997 .

[30]  Doron Aurbach,et al.  A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate‐Dimethyl Carbonate Mixtures , 1996 .

[31]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[32]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[33]  Doron Aurbach,et al.  Recent studies of the lithium-liquid electrolyte interface Electrochemical, morphological and spectral studies of a few important systems , 1995 .

[34]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[35]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[36]  R. Koch,et al.  The internal stress in thin silver, copper and gold films , 1985 .

[37]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[38]  W. P. Davey Precision Measurements of the Lattice Constants of Twelve Common Metals , 1925 .

[39]  D. N. Buckley,et al.  Understanding Residual Stress in Electrodeposited Cu Thin Films , 2013 .

[40]  Frans Spaepen,et al.  Interfaces and stresses in thin films , 2000 .

[41]  D. J. Montgomery,et al.  Lattice Constants of Separated Lithium Isotopes , 1957 .