A three level system for estimating the biomass of Castanea sativa Mill. coppice stands in north-west Spain
暂无分享,去创建一个
Juan Majada | Elena Canga | Pedro Álvarez-Álvarez | Marcos Barrio-Anta | María Menéndez-Miguélez | J. Majada | P. Álvarez-Álvarez | M. Barrio-Anta | M. Menéndez-Miguélez | E. Canga
[1] J. Álvarez-González,et al. Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives , 2006 .
[2] Elena Angulo Aramburu. Ministerio de educación y ciencia , 1991 .
[3] Chuankuan Wang,et al. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests , 2006 .
[4] Fernando Castedo-Dorado,et al. Development of a stand density management diagram for radiata pine stands including assessment of stand stability , 2009 .
[5] Laurent Saint-André,et al. Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo , 2005 .
[6] David A. Belsley,et al. Conditioning Diagnostics: Collinearity and Weak Data in Regression , 1991 .
[7] G. Alonso,et al. Mejora del Pinus pinaster Ait. en Galicia , 1993 .
[8] Thomas P. Ryan,et al. Modern Regression Methods , 1996 .
[9] Hal O. Liechty,et al. Above- and belowground dry matter accumulation pattern derived from dimensional biomass relationships , 1996 .
[10] M. Tomé,et al. Total aboveground biomass and net dry matter accumulation by plant component in young Eucalyptus globulus in response to irrigation , 1998 .
[11] H. Wiant,et al. A simple technique for estimating cubic foot volume yields , 2004 .
[12] Richard J. Harper,et al. Additive prediction of aboveground biomass for Pinus radiata (D. Don) plantations , 2010 .
[13] M. Ter-Mikaelian,et al. Biomass equations for sixty-five North American tree species , 1997 .
[14] M.S. Patricio,et al. Biomass Equations for Castanea sativa High Forest in the Northwest of Portugal , 2004 .
[15] B. Parresol. Assessing Tree and Stand Biomass: A Review with Examples and Critical Comparisons , 1999, Forest Science.
[16] Oscar García,et al. Evaluating forest Growth Models , 1997 .
[17] S. Salazar,et al. Above-ground tree biomass equations and nutrient pools for a paraclimax chestnut stand and for a climax oak stand in the Sierra de Francia Mountains, Salamanca, Spain , 2010 .
[18] R. Ruiz-Peinado,et al. Producción de biomasa y fijación de CO2 por los bosques españoles , 2011 .
[19] Bernard R. Parresol,et al. Additivity of nonlinear biomass equations , 2001 .
[20] I. S. Regina. Organic matter distribution and nutrient fluxes within a sweet chestnut (Castanea sativa Mill) stand of the Sierra de Gata, Spain , 2000 .
[21] A. Harvey. Estimating Regression Models with Multiplicative Heteroscedasticity , 1976 .
[22] R. H. Myers. Classical and modern regression with applications , 1986 .
[23] R. Birdsey,et al. National-Scale Biomass Estimators for United States Tree Species , 2003, Forest Science.
[24] J. Ranger,et al. Dynamique d'incorporation du carbone et des éléments nutritifs dans un taillis simple de châtaignier (Castanea sativa Miller) , 1990 .
[25] R. Briggs,et al. Forcing additivity of biomass tables: some empirical results , 1984 .
[26] Ben Bond-Lamberty,et al. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba , 2002 .
[27] B. Parresol,et al. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.) , 2003 .
[28] L. Zhang. Cross-validation of Non-linear Growth Functions for Modelling Tree Height–Diameter Relationships , 1997 .
[29] R. Hall,et al. Assessing prediction errors of generalized tree biomass and volume equations for the boreal forest region of west-central Canada , 2008 .
[30] T. Johansson. Biomass equations for determining fractions of pendula and pubescent birches growing on abandoned farmland and some practical implications. , 1999 .
[31] Richard H. Waring,et al. Forest Ecosystems: Analysis at Multiple Scales , 1985 .
[32] T. Hassard,et al. Applied Linear Regression , 2005 .
[33] G. Moreno,et al. Nutrient cycling in deciduous forest ecosystems of the Sierra de Gata mountains: nutrient supplies to the soil through both litter and throughfall. , 1998 .
[34] I. S. Regina,et al. Biomass, litterfall and nutrient content in Castanea sativa coppice stands of southern Europe. , 1996 .
[35] Robert A. Monserud,et al. An evaluation of diagnostic tests and their roles in validating forest biometric models , 2004 .
[36] G. M. Furnival. An index for comparing equations used in constructing volume tables , 1961 .
[37] U. Diéguez-Aranda,et al. An ecoregional model for estimating volume, biomass and carbon pools in maritime pine stands in Galicia (northwestern Spain) , 2006 .
[38] A. Kozak,et al. Effects of multicollinearity and autocorrelation on the variable-exponent taper functions , 1997 .
[39] E. Green,et al. A method of forcing additivity of biomass tables when using nonlinear models , 1985 .
[40] Bruce E. Borders,et al. Systems of Equations in Forest Stand Modeling , 1989, Forest Science.
[41] K. Rennolls,et al. Timber Management-A Quantitative Approach. , 1984 .
[42] Didier Bert,et al. Allometric relationships for branch and tree woody biomass of Maritime pine (Pinus pinaster Aı̈t.) , 2002 .
[43] E. H. White,et al. Biomass estimation equations for norway spruce in New York , 1986 .
[44] A. Kozak,et al. Does cross validation provide additional information in the evaluation of regression models , 2003 .