A Componentwise Splitting Method for Pricing American Options Under the Bates Model

A linear complementarity problem (LCP) is formulated for the price of American options under the Bates model which combines the Heston stochastic volatility model and the Merton jump-diffusion model. A finite difference discretization is described for the partial derivatives and a simple quadrature is used for the integral term due to jumps. A componentwise splitting method is generalized for the Bates model. It is leads to solution of sequence of one-dimensional LCPs which can be solved very efficiently using the Brennan and Schwartz algorithm. The numerical experiments demonstrate the componentwise splitting method to be essentially as accurate as the PSOR method, but order of magnitude faster. Furthermore, pricing under the Bates model is less than twice more expensive computationally than under the Heston model in the experiments.

[1]  Peter A. Forsyth,et al.  Penalty methods for American options with stochastic volatility , 1998 .

[2]  Jari Toivanen,et al.  COMPONENTWISE SPLITTING METHODS FOR PRICING AMERICAN OPTIONS UNDER STOCHASTIC VOLATILITY , 2007 .

[3]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[4]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[5]  G. Meyer,et al.  The Evaluation of American Option Prices Under Stochastic Volatility and Jump-Diffusion Dynamics Using the Method of Lines , 2008 .

[6]  Kevin Parrott,et al.  Multigrid for American option pricing with stochastic volatility , 1999 .

[7]  O. Pironneau,et al.  Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .

[8]  N. N. Yanenko,et al.  The Method of Fractional Steps , 1971 .

[9]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[10]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[11]  N. N. I︠A︡nenko The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables , 1971 .

[12]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[13]  Curt Randall,et al.  Pricing Financial Instruments: The Finite Difference Method , 2000 .

[14]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[15]  R. Rannacher Finite element solution of diffusion problems with irregular data , 1984 .

[16]  Rama Cont,et al.  A FINITE DIFFERENCE SCHEME FOR OPTION PRICING IN JUMP DIFFUSION AND EXPONENTIAL L , 2005 .

[17]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[18]  Leif Andersen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .

[19]  Christoph Schwab,et al.  Fast Numerical Solution of Parabolic Integrodifferential Equations with Applications in Finance , 2005, SIAM J. Sci. Comput..

[20]  Moshe Koppel,et al.  Computational methods in authorship attribution , 2009, J. Assoc. Inf. Sci. Technol..

[21]  Cornelis W. Oosterlee,et al.  Numerical valuation of options with jumps in the underlying , 2005 .

[22]  Jari Toivanen,et al.  Pricing American Options Using LU Decomposition , 2007 .

[23]  G. Marchuk Splitting and alternating direction methods , 1990 .

[24]  Cornelis W. Oosterlee,et al.  On multigrid for linear complementarity problems with application to American-style options. , 2003 .

[25]  Robert A. van de Geijn,et al.  Anatomy of high-performance matrix multiplication , 2008, TOMS.

[26]  S. Ikonen,et al.  Efficient numerical methods for pricing American options under stochastic volatility , 2008 .

[27]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[28]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[29]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[30]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[31]  Eduardo S. Schwartz,et al.  The Valuation of American Put Options , 1977 .

[32]  D. Duffie,et al.  Transform Analysis and Asset Pricing for Affine Jump-Diffusions , 1999 .

[33]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[34]  Yves Achdou,et al.  Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .

[35]  P. Forsyth,et al.  Robust numerical methods for contingent claims under jump diffusion processes , 2005 .

[36]  Jari Toivanen,et al.  Numerical Valuation of European and American Options under Kou's Jump-Diffusion Model , 2008, SIAM J. Sci. Comput..

[37]  Vadim Linetsky,et al.  Pricing Options in Jump-Diffusion Models: An Extrapolation Approach , 2008, Oper. Res..