Energy recovery from natural gas pressure reduction stations: Integration with low temperature heat sources

[1]  E. Hammerschmidt Formation of Gas Hydrates in Natural Gas Transmission Lines , 1934 .

[2]  Carolyn A. Koh,et al.  Clathrate hydrates of natural gases , 1990 .

[3]  M. Motiee,et al.  Estimate possibility of hydrates , 1991 .

[4]  Im IKW Schwarza leistet Erdgas schon vor der Verbrennung Arbeit , 1994 .

[5]  A. Soper,et al.  Mechanisms of gas hydrate formation and inhibition , 2002 .

[6]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[7]  Saeid Mokhatab,et al.  Quickly estimate hydrate formation conditions in natural gases , 2005 .

[8]  A. I. Prilutskii Use of piston expanders in plants utilizing energy of compressed natural gas , 2008 .

[9]  Mahmood Farzaneh-Gord,et al.  Recoverable Energy in Natural Gas Pressure Drop Stations: A Case Study of the Khangiran Gas Refinery , 2008 .

[10]  Wojciech Kostowski,et al.  The Possibility of Energy Generation within the Conventional Natural Gas Transport System , 2010 .

[11]  Sunwon Park,et al.  Optimization of a waste heat utilization network in an eco-industrial park , 2010 .

[12]  E. Khamehchi,et al.  Predicting the Hydrate Formation Temperature by a New Correlation and Neural Network , 2013 .

[13]  Sergio Usón,et al.  Thermoeconomic assessment of a natural gas expansion system integrated with a co-generation unit , 2013 .

[14]  E. Shojaeizadeh,et al.  The minimum gas temperature at the inlet of regulators in natural gas pressure reduction stations (CGS) for energy saving in water bath heaters , 2014 .

[15]  Brian Vad Mathiesen,et al.  4th Generation District Heating (4GDH) Integrating smart thermal grids into future sustainable energy systems , 2014 .

[16]  M. Farzaneh-Gord,et al.  Energy and exergy analysis of natural gas pressure reduction points equipped with solar heat and controllable heaters , 2014 .

[17]  Wojciech Stanek,et al.  Thermoecological cost of electricity production in the natural gas pressure reduction process , 2014 .

[18]  Onder Ozgener,et al.  Energy and exergy analysis of electricity generation from natural gas pressure reducing stations , 2015 .

[19]  Charlotte Marguerite,et al.  Concept development of an industrial waste heat based micro DH network , 2015 .

[20]  Jacek Kalina,et al.  Energy and exergy recovery in a natural gas compressor station – A technical and economic analysis , 2015 .

[21]  Corrado Schenone,et al.  Combined Production and Conversion of Energy in an Urban Integrated System , 2016 .

[22]  Mahmood Farzaneh-Gord,et al.  Defining a technical criterion for economic justification of employing CHP technology in city gate stations , 2016 .

[23]  Guoqiang Li,et al.  Performance Study on a Single-Screw Expander for a Small-Scale Pressure Recovery System , 2016 .

[24]  Mahmood Farzaneh-Gord,et al.  Integration of vertical ground-coupled heat pump into a conventional natural gas pressure drop station: Energy, economic and CO2 emission assessment , 2016 .

[25]  Muhammad Imran,et al.  Volumetric expanders for low grade heat and waste heat recovery applications , 2016 .

[26]  Mahmood Farzaneh-Gord,et al.  An energetic and economic analysis of power productive gas expansion stations for employing combined heat and power , 2017 .

[27]  Józef Rak,et al.  Use of Rolling Piston Expanders for Energy Regeneration in Natural Gas Pressure Reduction Stations—Selected Thermodynamic Issues , 2017 .

[29]  N. M. Scornaienchi,et al.  Theoretical and experimental analysis of a new compressible flow small power turbine prototype , 2017 .

[30]  Corrado Schenone,et al.  Future distributed generation: An operational multi-objective optimization model for integrated small scale urban electrical, thermal and gas grids , 2017 .

[31]  Gorm B. Andresen,et al.  A smart combination of a solar assisted absorption chiller and a power productive gas expansion unit for cogeneration of power and cooling , 2018 .